File size: 7,237 Bytes
629e228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c2b08
629e228
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import requests
import zipfile
import subprocess
import shutil
from huggingface_hub import snapshot_download

# Function to clone or update the llama.cpp repository with shallow cloning
def clone_or_update_llama_cpp():
    print("Preparing...")
    base_dir = os.path.dirname(os.path.abspath(__file__))
    os.chdir(base_dir)  # Move to the base directory of the script
    if not os.path.exists("llama.cpp"):
        subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"])
    else:
        os.chdir("llama.cpp")
        subprocess.run(["git", "pull"])
    os.chdir(base_dir)  # Move back to the base directory
    print("The 'llama.cpp' repository is ready.")

# Function to download and extract the latest release of llama.cpp
def download_llama_release():
    base_dir = os.path.dirname(os.path.abspath(__file__))
    dl_dir = os.path.join(base_dir, "bin", "dl")
    if not os.path.exists(dl_dir):
        os.makedirs(dl_dir)

    os.chdir(dl_dir)
    latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest"
    response = requests.get(latest_release_url)
    if response.status_code == 200:
        latest_release_tag = response.url.split("/")[-1]
        download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cublas-cu12.2.0-x64.zip"
        response = requests.get(download_url)
        if response.status_code == 200:
            with open(f"llama-{latest_release_tag}-bin-win-cublas-cu12.2.0-x64.zip", "wb") as f:
                f.write(response.content)
            with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cublas-cu12.2.0-x64.zip", "r") as zip_ref:
                zip_ref.extractall(os.path.join(base_dir, "bin"))
            print("Downloading latest 'llama.cpp' prebuilt Windows binaries...")
            print("Download and extraction completed successfully.")
            return latest_release_tag  # Return the latest release tag
        else:
            print("Failed to download the release file.")
    else:
        print("Failed to fetch the latest release information.")

# Function to download and extract cudart if necessary
def download_cudart_if_necessary(latest_release_tag):
    base_dir = os.path.dirname(os.path.abspath(__file__))
    cudart_dl_dir = os.path.join(base_dir, "bin", "dl")
    if not os.path.exists(cudart_dl_dir):
        os.makedirs(cudart_dl_dir)

    cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip")
    cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"]

    # Check if all required files exist
    if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files):
        print("Cuda resources already exist. Skipping download.")
    else:
        cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip"
        response = requests.get(cudart_download_url)
        if response.status_code == 200:
            with open(cudart_zip_file, "wb") as f:
                f.write(response.content)
            with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref:
                zip_ref.extractall(os.path.join(base_dir, "bin"))
            print("Preparing 'cuda' resources...")
            print("Download and extraction of cudart completed successfully.")
        else:
            print("Failed to download the cudart release file.")

# Function to collect user input and download the specified model repository
def download_model_repo():
    base_dir = os.path.dirname(os.path.abspath(__file__))
    models_dir = os.path.join(base_dir, "models")
    if not os.path.exists(models_dir):
        os.makedirs(models_dir)

    model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ")
    model_name = model_id.split("/")[-1]
    model_dir = os.path.join(models_dir, model_name)

    # Download the model repository if it doesn't exist
    if not os.path.exists(model_dir):
        revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main"

        print("Downloading model repository...")
        snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision)
        print("Model repository downloaded successfully.")
    else:
        print("Model already exists.")

    # Convert the downloaded model to GGUF F16 format and generate imatrix.dat
    convert_model_to_gguf_f16(base_dir, model_dir, model_name)

# Function to convert the downloaded model to GGUF F16 format
def convert_model_to_gguf_f16(base_dir, model_dir, model_name):
    convert_script = os.path.join(base_dir, "llama.cpp", "convert.py")
    gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
    gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")

    if not os.path.exists(gguf_dir):
        os.makedirs(gguf_dir)

    # Execute the conversion command if F16 file doesn't exist
    if not os.path.exists(gguf_model_path):
        subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16"])

        # Delete the original model directory
        shutil.rmtree(model_dir)
        print(f"Original model directory '{model_dir}' deleted.")

        # Execute the imatrix command if imatrix.dat doesn't exist
        imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe")
        imatrix_output = os.path.join(gguf_dir, "imatrix.dat")
        imatrix_txt = os.path.join(base_dir, "imatrix", "imatrix.txt")
        if not os.path.exists(imatrix_output):
            subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", imatrix_txt, "-ngl", "13"])
            # Move the imatrix.dat file to the GGUF folder
            shutil.move("imatrix.dat", gguf_dir)
            print("imatrix.dat generated successfully.")

    # Quantize the models
    quantize_models(base_dir, model_name)

# Function to quantize models with different options
def quantize_models(base_dir, model_name):
    gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
    f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")

    quantization_options = [
        "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", 
        "Q5_K_S", "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XS", "IQ3_XXS"
    ]

    for quant_option in quantization_options:
        quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf"
        quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name)
        quantize_command = os.path.join(base_dir, "bin", "quantize.exe")
        imatrix_path = os.path.join(gguf_dir, "imatrix.dat")

        subprocess.run([quantize_command, "--imatrix", imatrix_path, 
                        f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir)
        print(f"Model quantized with {quant_option} option.")

# Main function to execute the steps
def main():
    clone_or_update_llama_cpp()
    latest_release_tag = download_llama_release()
    download_cudart_if_necessary(latest_release_tag)
    download_model_repo()
    print("Finished.")

if __name__ == "__main__":
    main()