--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ft-keyword-spotting results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9820535451603413 --- # wav2vec2-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0860 - Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5147 | 0.9994 | 399 | 0.3695 | 0.9665 | | 0.2219 | 1.9987 | 798 | 0.1276 | 0.9768 | | 0.196 | 2.9981 | 1197 | 0.0925 | 0.9809 | | 0.1388 | 4.0 | 1597 | 0.0976 | 0.9788 | | 0.1444 | 4.9969 | 1995 | 0.0860 | 0.9821 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1