File size: 9,317 Bytes
8ab0026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806568
 
 
 
 
 
 
 
8ab0026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ab0026
 
 
 
 
 
3806568
8ab0026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6689
- Answer: {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809}
- Header: {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119}
- Question: {'precision': 0.7777777777777778, 'recall': 0.828169014084507, 'f1': 0.8021828103683492, 'number': 1065}
- Overall Precision: 0.7209
- Overall Recall: 0.7918
- Overall F1: 0.7547
- Overall Accuracy: 0.8158

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                       | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8306        | 1.0   | 10   | 1.6060          | {'precision': 0.026582278481012658, 'recall': 0.02595797280593325, 'f1': 0.026266416510318948, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.21528861154446177, 'recall': 0.1295774647887324, 'f1': 0.16178194607268465, 'number': 1065} | 0.1111            | 0.0798         | 0.0929     | 0.3733           |
| 1.4787        | 2.0   | 20   | 1.2612          | {'precision': 0.20019627085377822, 'recall': 0.2521631644004944, 'f1': 0.22319474835886213, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.419710544452102, 'recall': 0.571830985915493, 'f1': 0.4841017488076311, 'number': 1065}     | 0.3291            | 0.4079         | 0.3643     | 0.5976           |
| 1.1115        | 3.0   | 30   | 0.9517          | {'precision': 0.466, 'recall': 0.5760197775030902, 'f1': 0.5152017689331123, 'number': 809}                   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.5697115384615384, 'recall': 0.6676056338028169, 'f1': 0.6147859922178989, 'number': 1065}   | 0.5201            | 0.5906         | 0.5531     | 0.6834           |
| 0.8531        | 4.0   | 40   | 0.8275          | {'precision': 0.5730337078651685, 'recall': 0.7564894932014833, 'f1': 0.65210442194992, 'number': 809}        | {'precision': 0.06521739130434782, 'recall': 0.025210084033613446, 'f1': 0.03636363636363636, 'number': 119} | {'precision': 0.6735751295336787, 'recall': 0.7323943661971831, 'f1': 0.7017543859649122, 'number': 1065}   | 0.6140            | 0.6999         | 0.6542     | 0.7393           |
| 0.7059        | 5.0   | 50   | 0.7345          | {'precision': 0.6333687566418703, 'recall': 0.7367119901112484, 'f1': 0.6811428571428572, 'number': 809}      | {'precision': 0.2, 'recall': 0.14285714285714285, 'f1': 0.16666666666666666, 'number': 119}                  | {'precision': 0.6966386554621848, 'recall': 0.7784037558685446, 'f1': 0.7352549889135255, 'number': 1065}   | 0.6507            | 0.7235         | 0.6852     | 0.7712           |
| 0.5949        | 6.0   | 60   | 0.6931          | {'precision': 0.6376050420168067, 'recall': 0.7503090234857849, 'f1': 0.689381033503691, 'number': 809}       | {'precision': 0.20430107526881722, 'recall': 0.15966386554621848, 'f1': 0.1792452830188679, 'number': 119}   | {'precision': 0.6931637519872814, 'recall': 0.8187793427230047, 'f1': 0.7507533362031856, 'number': 1065}   | 0.6505            | 0.7516         | 0.6974     | 0.7836           |
| 0.5143        | 7.0   | 70   | 0.6674          | {'precision': 0.6688172043010753, 'recall': 0.7688504326328801, 'f1': 0.7153536515238643, 'number': 809}      | {'precision': 0.23478260869565218, 'recall': 0.226890756302521, 'f1': 0.23076923076923078, 'number': 119}    | {'precision': 0.7146341463414634, 'recall': 0.8253521126760563, 'f1': 0.7660130718954249, 'number': 1065}   | 0.6716            | 0.7667         | 0.7160     | 0.7933           |
| 0.4641        | 8.0   | 80   | 0.6507          | {'precision': 0.667016806722689, 'recall': 0.7849196538936959, 'f1': 0.7211811470755252, 'number': 809}       | {'precision': 0.3142857142857143, 'recall': 0.2773109243697479, 'f1': 0.29464285714285715, 'number': 119}    | {'precision': 0.7347280334728034, 'recall': 0.8244131455399061, 'f1': 0.7769911504424779, 'number': 1065}   | 0.6865            | 0.7757         | 0.7284     | 0.8029           |
| 0.4063        | 9.0   | 90   | 0.6671          | {'precision': 0.6574074074074074, 'recall': 0.7898640296662547, 'f1': 0.7175743964065132, 'number': 809}      | {'precision': 0.3114754098360656, 'recall': 0.31932773109243695, 'f1': 0.3153526970954357, 'number': 119}    | {'precision': 0.747008547008547, 'recall': 0.8206572769953052, 'f1': 0.782102908277405, 'number': 1065}     | 0.6851            | 0.7782         | 0.7287     | 0.8017           |
| 0.3643        | 10.0  | 100  | 0.6603          | {'precision': 0.6851063829787234, 'recall': 0.796044499381953, 'f1': 0.7364208118925099, 'number': 809}       | {'precision': 0.3669724770642202, 'recall': 0.33613445378151263, 'f1': 0.3508771929824562, 'number': 119}    | {'precision': 0.7674825174825175, 'recall': 0.8244131455399061, 'f1': 0.7949298325033951, 'number': 1065}   | 0.7123            | 0.7837         | 0.7463     | 0.8069           |
| 0.3331        | 11.0  | 110  | 0.6691          | {'precision': 0.6928879310344828, 'recall': 0.7948084054388134, 'f1': 0.740356937248129, 'number': 809}       | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119}    | {'precision': 0.7666666666666667, 'recall': 0.8206572769953052, 'f1': 0.7927437641723357, 'number': 1065}   | 0.7088            | 0.7802         | 0.7428     | 0.8071           |
| 0.3193        | 12.0  | 120  | 0.6597          | {'precision': 0.6932059447983014, 'recall': 0.8071693448702101, 'f1': 0.7458595088520845, 'number': 809}      | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119}    | {'precision': 0.7721739130434783, 'recall': 0.8338028169014085, 'f1': 0.801805869074492, 'number': 1065}    | 0.7152            | 0.7938         | 0.7524     | 0.8112           |
| 0.2972        | 13.0  | 130  | 0.6679          | {'precision': 0.7011866235167206, 'recall': 0.8034610630407911, 'f1': 0.7488479262672811, 'number': 809}      | {'precision': 0.344, 'recall': 0.36134453781512604, 'f1': 0.3524590163934426, 'number': 119}                 | {'precision': 0.7716814159292036, 'recall': 0.8187793427230047, 'f1': 0.7945330296127562, 'number': 1065}   | 0.7172            | 0.7852         | 0.7497     | 0.8145           |
| 0.2833        | 14.0  | 140  | 0.6684          | {'precision': 0.703023758099352, 'recall': 0.8046971569839307, 'f1': 0.7504322766570604, 'number': 809}       | {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119}   | {'precision': 0.7769973661106233, 'recall': 0.8309859154929577, 'f1': 0.8030852994555354, 'number': 1065}   | 0.7207            | 0.7923         | 0.7548     | 0.8163           |
| 0.2765        | 15.0  | 150  | 0.6689          | {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809}      | {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119}   | {'precision': 0.7777777777777778, 'recall': 0.828169014084507, 'f1': 0.8021828103683492, 'number': 1065}    | 0.7209            | 0.7918         | 0.7547     | 0.8158           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3