Ewel commited on
Commit
67c3125
·
verified ·
1 Parent(s): b1f79a4

Upload trained RoBERTa

Browse files
.gitattributes CHANGED
@@ -1,35 +1,11 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
4
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
10
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
11
+ sentencepiece.bpe.model filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "xlm-roberta",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "output_past": true,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.17.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 250002
25
+ }
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - exbert
4
+ language:
5
+ - multilingual
6
+ - af
7
+ - am
8
+ - ar
9
+ - as
10
+ - az
11
+ - be
12
+ - bg
13
+ - bn
14
+ - br
15
+ - bs
16
+ - ca
17
+ - cs
18
+ - cy
19
+ - da
20
+ - de
21
+ - el
22
+ - en
23
+ - eo
24
+ - es
25
+ - et
26
+ - eu
27
+ - fa
28
+ - fi
29
+ - fr
30
+ - fy
31
+ - ga
32
+ - gd
33
+ - gl
34
+ - gu
35
+ - ha
36
+ - he
37
+ - hi
38
+ - hr
39
+ - hu
40
+ - hy
41
+ - id
42
+ - is
43
+ - it
44
+ - ja
45
+ - jv
46
+ - ka
47
+ - kk
48
+ - km
49
+ - kn
50
+ - ko
51
+ - ku
52
+ - ky
53
+ - la
54
+ - lo
55
+ - lt
56
+ - lv
57
+ - mg
58
+ - mk
59
+ - ml
60
+ - mn
61
+ - mr
62
+ - ms
63
+ - my
64
+ - ne
65
+ - nl
66
+ - no
67
+ - om
68
+ - or
69
+ - pa
70
+ - pl
71
+ - ps
72
+ - pt
73
+ - ro
74
+ - ru
75
+ - sa
76
+ - sd
77
+ - si
78
+ - sk
79
+ - sl
80
+ - so
81
+ - sq
82
+ - sr
83
+ - su
84
+ - sv
85
+ - sw
86
+ - ta
87
+ - te
88
+ - th
89
+ - tl
90
+ - tr
91
+ - ug
92
+ - uk
93
+ - ur
94
+ - uz
95
+ - vi
96
+ - xh
97
+ - yi
98
+ - zh
99
+ license: mit
100
+ ---
101
+
102
+ # XLM-RoBERTa (base-sized model)
103
+
104
+ XLM-RoBERTa model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
105
+
106
+ Disclaimer: The team releasing XLM-RoBERTa did not write a model card for this model so this model card has been written by the Hugging Face team.
107
+
108
+ ## Model description
109
+
110
+ XLM-RoBERTa is a multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages.
111
+
112
+ RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
113
+
114
+ More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence.
115
+
116
+ This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa model as inputs.
117
+
118
+ ## Intended uses & limitations
119
+
120
+ You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta) to look for fine-tuned versions on a task that interests you.
121
+
122
+ Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2.
123
+
124
+ ## Usage
125
+
126
+ You can use this model directly with a pipeline for masked language modeling:
127
+
128
+ ```python
129
+ >>> from transformers import pipeline
130
+ >>> unmasker = pipeline('fill-mask', model='xlm-roberta-base')
131
+ >>> unmasker("Hello I'm a <mask> model.")
132
+
133
+ [{'score': 0.10563907772302628,
134
+ 'sequence': "Hello I'm a fashion model.",
135
+ 'token': 54543,
136
+ 'token_str': 'fashion'},
137
+ {'score': 0.08015287667512894,
138
+ 'sequence': "Hello I'm a new model.",
139
+ 'token': 3525,
140
+ 'token_str': 'new'},
141
+ {'score': 0.033413201570510864,
142
+ 'sequence': "Hello I'm a model model.",
143
+ 'token': 3299,
144
+ 'token_str': 'model'},
145
+ {'score': 0.030217764899134636,
146
+ 'sequence': "Hello I'm a French model.",
147
+ 'token': 92265,
148
+ 'token_str': 'French'},
149
+ {'score': 0.026436051353812218,
150
+ 'sequence': "Hello I'm a sexy model.",
151
+ 'token': 17473,
152
+ 'token_str': 'sexy'}]
153
+ ```
154
+
155
+ Here is how to use this model to get the features of a given text in PyTorch:
156
+
157
+ ```python
158
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
159
+
160
+ tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
161
+ model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-base")
162
+
163
+ # prepare input
164
+ text = "Replace me by any text you'd like."
165
+ encoded_input = tokenizer(text, return_tensors='pt')
166
+
167
+ # forward pass
168
+ output = model(**encoded_input)
169
+ ```
170
+
171
+ ### BibTeX entry and citation info
172
+
173
+ ```bibtex
174
+ @article{DBLP:journals/corr/abs-1911-02116,
175
+ author = {Alexis Conneau and
176
+ Kartikay Khandelwal and
177
+ Naman Goyal and
178
+ Vishrav Chaudhary and
179
+ Guillaume Wenzek and
180
+ Francisco Guzm{\'{a}}n and
181
+ Edouard Grave and
182
+ Myle Ott and
183
+ Luke Zettlemoyer and
184
+ Veselin Stoyanov},
185
+ title = {Unsupervised Cross-lingual Representation Learning at Scale},
186
+ journal = {CoRR},
187
+ volume = {abs/1911.02116},
188
+ year = {2019},
189
+ url = {http://arxiv.org/abs/1911.02116},
190
+ eprinttype = {arXiv},
191
+ eprint = {1911.02116},
192
+ timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
193
+ biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
194
+ bibsource = {dblp computer science bibliography, https://dblp.org}
195
+ }
196
+ ```
197
+
198
+ <a href="https://huggingface.co/exbert/?model=xlm-roberta-base">
199
+ <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
200
+ </a>
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "xlm-roberta",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "output_past": true,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.17.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 250002
25
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:311b6941e02128b01c6a429f55b47b351a86fe53e6802774d87696bcbc465992
3
+ size 1113187999
model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a76bfe6a405f1a9ace42b2dbd8fbd284dd8127a732ddcf2145b0fc9413b30d40
3
+ size 1881470773
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd4797bc397c3b8b55d6bb5740366b57e6a3ce91c04c77f22aafc0c128e6feb
3
+ size 1115567652
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d83baaafea92d36de26002c8135a427d55ee6fdc4faaa6e400be4c47724a07e
3
+ size 1115590446
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1232fb4018ab3a236c29f10aefd190ef844ad994ac74820d9532637bd87b3f4
3
+ size 1112441536
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_max_length": 512}