update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-53-demo1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-53-demo1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9692
|
20 |
+
- Wer: 0.8462
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 5
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 10
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 100
|
48 |
+
- num_epochs: 3
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 12.978 | 0.06 | 100 | 3.5377 | 1.0 |
|
55 |
+
| 3.5026 | 0.13 | 200 | 3.4366 | 1.0 |
|
56 |
+
| 3.4084 | 0.19 | 300 | 3.3831 | 1.0 |
|
57 |
+
| 3.3551 | 0.26 | 400 | 3.2563 | 1.0 |
|
58 |
+
| 3.2668 | 0.32 | 500 | 3.2109 | 1.0 |
|
59 |
+
| 2.9398 | 0.38 | 600 | 2.4548 | 0.9987 |
|
60 |
+
| 2.2204 | 0.45 | 700 | 1.8870 | 1.0135 |
|
61 |
+
| 1.7401 | 0.51 | 800 | 1.6816 | 1.0247 |
|
62 |
+
| 1.5748 | 0.57 | 900 | 1.4741 | 0.9953 |
|
63 |
+
| 1.4539 | 0.64 | 1000 | 1.4573 | 0.9852 |
|
64 |
+
| 1.3612 | 0.7 | 1100 | 1.3534 | 0.9529 |
|
65 |
+
| 1.3328 | 0.77 | 1200 | 1.3380 | 0.9320 |
|
66 |
+
| 1.2459 | 0.83 | 1300 | 1.2984 | 0.9247 |
|
67 |
+
| 1.1976 | 0.89 | 1400 | 1.2515 | 0.9252 |
|
68 |
+
| 1.1593 | 0.96 | 1500 | 1.2345 | 0.9030 |
|
69 |
+
| 1.1094 | 1.02 | 1600 | 1.2135 | 0.9305 |
|
70 |
+
| 1.0485 | 1.09 | 1700 | 1.2045 | 0.9121 |
|
71 |
+
| 0.9893 | 1.15 | 1800 | 1.1876 | 0.8990 |
|
72 |
+
| 1.0099 | 1.21 | 1900 | 1.1663 | 0.8889 |
|
73 |
+
| 0.982 | 1.28 | 2000 | 1.1674 | 0.8901 |
|
74 |
+
| 0.9975 | 1.34 | 2100 | 1.1181 | 0.8812 |
|
75 |
+
| 0.952 | 1.4 | 2200 | 1.1119 | 0.8817 |
|
76 |
+
| 0.9311 | 1.47 | 2300 | 1.0786 | 0.8773 |
|
77 |
+
| 0.9398 | 1.53 | 2400 | 1.1016 | 0.8720 |
|
78 |
+
| 0.9148 | 1.6 | 2500 | 1.0878 | 0.8778 |
|
79 |
+
| 0.9114 | 1.66 | 2600 | 1.1004 | 0.8712 |
|
80 |
+
| 0.902 | 1.72 | 2700 | 1.0223 | 0.8744 |
|
81 |
+
| 0.8978 | 1.79 | 2800 | 1.0616 | 0.8459 |
|
82 |
+
| 0.8675 | 1.85 | 2900 | 1.0974 | 0.8643 |
|
83 |
+
| 0.8373 | 1.92 | 3000 | 1.0389 | 0.8547 |
|
84 |
+
| 0.8575 | 1.98 | 3100 | 1.0388 | 0.8480 |
|
85 |
+
| 0.8313 | 2.04 | 3200 | 1.0001 | 0.8648 |
|
86 |
+
| 0.7357 | 2.11 | 3300 | 1.0222 | 0.8705 |
|
87 |
+
| 0.743 | 2.17 | 3400 | 1.0859 | 0.8765 |
|
88 |
+
| 0.7306 | 2.23 | 3500 | 1.0109 | 0.8515 |
|
89 |
+
| 0.7525 | 2.3 | 3600 | 0.9942 | 0.8619 |
|
90 |
+
| 0.7308 | 2.36 | 3700 | 1.0004 | 0.8578 |
|
91 |
+
| 0.7266 | 2.43 | 3800 | 1.0003 | 0.8497 |
|
92 |
+
| 0.737 | 2.49 | 3900 | 1.0146 | 0.8505 |
|
93 |
+
| 0.7202 | 2.55 | 4000 | 1.0172 | 0.8653 |
|
94 |
+
| 0.6945 | 2.62 | 4100 | 0.9894 | 0.8415 |
|
95 |
+
| 0.6633 | 2.68 | 4200 | 0.9894 | 0.8496 |
|
96 |
+
| 0.6972 | 2.75 | 4300 | 0.9805 | 0.8505 |
|
97 |
+
| 0.6872 | 2.81 | 4400 | 0.9939 | 0.8509 |
|
98 |
+
| 0.7238 | 2.87 | 4500 | 0.9740 | 0.8532 |
|
99 |
+
| 0.6847 | 2.94 | 4600 | 0.9692 | 0.8462 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.11.3
|
105 |
+
- Pytorch 1.10.0+cu111
|
106 |
+
- Datasets 1.14.0
|
107 |
+
- Tokenizers 0.10.3
|