--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2-1.5B tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_tldr_callback10 results: [] --- # fine_tuned_tldr_callback10 This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1451 - Accuracy: 0.9682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8181 | 0.0393 | 100 | 0.2443 | 0.9050 | | 0.4998 | 0.0785 | 200 | 0.2800 | 0.8754 | | 0.4488 | 0.1178 | 300 | 0.5770 | 0.8710 | | 0.3996 | 0.1570 | 400 | 0.1956 | 0.9139 | | 0.298 | 0.1963 | 500 | 0.3754 | 0.9307 | | 0.2918 | 0.2356 | 600 | 0.7744 | 0.8905 | | 0.2906 | 0.2748 | 700 | 0.2349 | 0.9214 | | 0.2113 | 0.3141 | 800 | 0.2182 | 0.9443 | | 0.2552 | 0.3534 | 900 | 0.1959 | 0.9501 | | 0.227 | 0.3926 | 1000 | 0.1768 | 0.9496 | | 0.2203 | 0.4319 | 1100 | 0.1711 | 0.9439 | | 0.2212 | 0.4711 | 1200 | 0.1652 | 0.9585 | | 0.2153 | 0.5104 | 1300 | 0.1695 | 0.9567 | | 0.1975 | 0.5497 | 1400 | 0.1776 | 0.9536 | | 0.1866 | 0.5889 | 1500 | 0.1516 | 0.9602 | | 0.2209 | 0.6282 | 1600 | 0.1139 | 0.9691 | | 0.1788 | 0.6675 | 1700 | 0.1995 | 0.9563 | | 0.1808 | 0.7067 | 1800 | 0.1857 | 0.9554 | | 0.2401 | 0.7460 | 1900 | 0.1397 | 0.9686 | | 0.1602 | 0.7852 | 2000 | 0.1974 | 0.9620 | | 0.2206 | 0.8245 | 2100 | 0.1392 | 0.9633 | | 0.1609 | 0.8638 | 2200 | 0.1904 | 0.9620 | | 0.2108 | 0.9030 | 2300 | 0.1774 | 0.9611 | | 0.1408 | 0.9423 | 2400 | 0.1598 | 0.9669 | | 0.1696 | 0.9815 | 2500 | 0.1694 | 0.9660 | | 0.1231 | 1.0208 | 2600 | 0.1451 | 0.9682 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0