--- library_name: transformers license: other base_model: Qwen/Qwen1.5-MoE-A2.7B tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_per_domain_balanced_moe results: [] --- # fine_tuned_per_domain_balanced_moe This model is a fine-tuned version of [Qwen/Qwen1.5-MoE-A2.7B](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8781 - Accuracy: 0.5357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 5.4785 | 0.0006 | 100 | 6.6629 | 0.5689 | | 4.8644 | 0.0013 | 200 | 10.6619 | 0.5316 | | 4.5014 | 0.0019 | 300 | 3.0574 | 0.5299 | | 3.3262 | 0.0025 | 400 | 3.2657 | 0.4643 | | 2.7274 | 0.0032 | 500 | 2.0543 | 0.5314 | | 2.3305 | 0.0038 | 600 | 1.9673 | 0.4682 | | 2.4483 | 0.0044 | 700 | 2.7203 | 0.5357 | | 3.201 | 0.0051 | 800 | 3.5143 | 0.5357 | | 2.8675 | 0.0057 | 900 | 2.8781 | 0.5357 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0