MMP_Diffusion / MMP_Diffusion_Lora_config.py
Emotion-Director's picture
Upload folder using huggingface_hub
017bf8e verified
import os
import argparse
from transformers import PretrainedConfig
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default='/cpfs04/user/liudawei/jgl/projects/download_models/stable-diffusion/SDXL',
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default='custom',
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_path",
type=str,
default='/cpfs02/shared/llmit6/liudawei/jgl/EmotionDPO/data/ETI_emotion.parquet',
help=(
"The path of ETI dataset"
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--visual_prompts_dir",
type=str,
default='features/origin',
help="Path to initial visual prompts",
)
parser.add_argument(
"--prompt_len",
type=int,
default=16,
help="visual prompts length",
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="caption",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
# default=256,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--cache_dir",
type=str,
default='/cpfs04/user/liudawei/jgl/projects/download_models',
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed",
type=int,
# default=None,
default=42,
# was random for submission, need to test that not distributing same noise etc across devices
help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--random_crop",
default=False,
action="store_true",
help=(
"If set the images will be randomly"
" cropped (instead of center). The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--no_hflip",
action="store_true",
help="whether to supress horizontal flipping",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--num_train_epochs", type=int, default=3
)
parser.add_argument(
"--max_train_steps",
type=int,
default=2000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate_unet",
type=float,
default=1e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--learning_rate_lora",
type=float,
default=1e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--learning_rate_prompts",
type=float,
default=1e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_false",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant_with_warmup",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_adafactor", action="store_true", help="Whether or not to use adafactor (should save mem)"
)
# Bram Note: Haven't looked @ this yet
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=16,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=100,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default='latest',
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
parser.add_argument(
"--tracker_project_name",
type=str,
default="EmotionDPO",
help="exp group name",
)
parser.add_argument(
"--tracker_run_name",
type=str,
default="emotion_dpo_lora_v0_0_3_sdxl_2",
help="exp name",
)
parser.add_argument(
"--output_dir",
type=str,
default="log_training/emotion_dpo_lora_v0_0_3_sdxl_2",
help="The output directory where the model predictions and checkpoints will be written.",
)
## SDXL
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument("--sdxl", action='store_false', help="Train sdxl")
## DPO
parser.add_argument("--sft", action='store_true', help="Run Supervised Fine-Tuning instead of Direct Preference Optimization")
parser.add_argument("--beta_dpo", type=float, default=5000, help="The beta DPO temperature controlling strength of KL penalty")
parser.add_argument(
"--hard_skip_resume", action="store_true", help="Load weights etc. but don't iter through loader for loader resume, useful b/c resume takes forever"
)
parser.add_argument(
"--unet_init", type=str, default='', help="Initialize start of run from unet (not compatible w/ checkpoint load)"
)
parser.add_argument(
"--proportion_empty_prompts",
type=float,
default=0.2,
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
)
parser.add_argument(
"--split", type=str, default='train', help="Datasplit"
)
parser.add_argument(
"--choice_model", type=str, default='', help="Model to use for ranking (override dataset PS label_0/1). choices: aes, clip, hps, pickscore"
)
parser.add_argument(
"--dreamlike_pairs_only", action="store_true", help="Only train on pairs where both generations are from dreamlike"
)
parser.add_argument(
"--use_lora",
action="store_true",
default=True,
help="Whether or not to use LoRA (Low-Rank Adaptation).",
)
parser.add_argument(
"--lora_rank",
type=int,
default=64,
help="Rank parameter for LoRA (Low-Rank Adaptation).",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
## SDXL
if args.sdxl:
print("Running SDXL")
if args.resolution is None:
if args.sdxl:
args.resolution = 512
else:
args.resolution = 512
args.train_method = 'sft' if args.sft else 'dpo'
return args