|
import os |
|
import argparse |
|
from transformers import PretrainedConfig |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1." |
|
) |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default='/cpfs04/user/liudawei/jgl/projects/download_models/stable-diffusion/SDXL', |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default='custom', |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_path", |
|
type=str, |
|
default='/cpfs02/shared/llmit6/liudawei/jgl/EmotionDPO/data/ETI_emotion.parquet', |
|
help=( |
|
"The path of ETI dataset" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--visual_prompts_dir", |
|
type=str, |
|
default='features/origin', |
|
help="Path to initial visual prompts", |
|
) |
|
parser.add_argument( |
|
"--prompt_len", |
|
type=int, |
|
default=16, |
|
help="visual prompts length", |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image." |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="caption", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
|
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default='/cpfs04/user/liudawei/jgl/projects/download_models', |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", |
|
type=int, |
|
|
|
default=42, |
|
|
|
help="A seed for reproducible training." |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"If set the images will be randomly" |
|
" cropped (instead of center). The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--no_hflip", |
|
action="store_true", |
|
help="whether to supress horizontal flipping", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--num_train_epochs", type=int, default=3 |
|
) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=2000, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate_unet", |
|
type=float, |
|
default=1e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate_lora", |
|
type=float, |
|
default=1e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate_prompts", |
|
type=float, |
|
default=1e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_false", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant_with_warmup", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_adafactor", action="store_true", help="Whether or not to use adafactor (should save mem)" |
|
) |
|
|
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=16, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="wandb", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default='latest', |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="EmotionDPO", |
|
help="exp group name", |
|
) |
|
parser.add_argument( |
|
"--tracker_run_name", |
|
type=str, |
|
default="emotion_dpo_lora_v0_0_3_sdxl_2", |
|
help="exp name", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="log_training/emotion_dpo_lora_v0_0_3_sdxl_2", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument("--sdxl", action='store_false', help="Train sdxl") |
|
|
|
|
|
parser.add_argument("--sft", action='store_true', help="Run Supervised Fine-Tuning instead of Direct Preference Optimization") |
|
parser.add_argument("--beta_dpo", type=float, default=5000, help="The beta DPO temperature controlling strength of KL penalty") |
|
parser.add_argument( |
|
"--hard_skip_resume", action="store_true", help="Load weights etc. but don't iter through loader for loader resume, useful b/c resume takes forever" |
|
) |
|
parser.add_argument( |
|
"--unet_init", type=str, default='', help="Initialize start of run from unet (not compatible w/ checkpoint load)" |
|
) |
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0.2, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--split", type=str, default='train', help="Datasplit" |
|
) |
|
parser.add_argument( |
|
"--choice_model", type=str, default='', help="Model to use for ranking (override dataset PS label_0/1). choices: aes, clip, hps, pickscore" |
|
) |
|
parser.add_argument( |
|
"--dreamlike_pairs_only", action="store_true", help="Only train on pairs where both generations are from dreamlike" |
|
) |
|
parser.add_argument( |
|
"--use_lora", |
|
action="store_true", |
|
default=True, |
|
help="Whether or not to use LoRA (Low-Rank Adaptation).", |
|
) |
|
parser.add_argument( |
|
"--lora_rank", |
|
type=int, |
|
default=64, |
|
help="Rank parameter for LoRA (Low-Rank Adaptation).", |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
|
|
|
|
if args.sdxl: |
|
print("Running SDXL") |
|
if args.resolution is None: |
|
if args.sdxl: |
|
args.resolution = 512 |
|
else: |
|
args.resolution = 512 |
|
|
|
args.train_method = 'sft' if args.sft else 'dpo' |
|
return args |
|
|