File size: 7,392 Bytes
3925820 55560d6 3925820 55560d6 3925820 cee95c7 3925820 748da01 3925820 484ce60 3925820 cee95c7 3925820 cee95c7 3925820 cee95c7 3925820 cee95c7 3925820 e2e4413 cee95c7 748da01 cee95c7 55560d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
language:
- en
license: llama2
tags:
- math
- reasoning
datasets:
- EleutherAI/proof-pile-2
- open-web-math/open-web-math
model-index:
- name: llemma_34b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 40.31
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EleutherAI/llemma_34b
name: Open LLM Leaderboard
---
<img src="llemma.png" width="400">
[ArXiv](http://arxiv.org/abs/2310.10631) | [Models](https://huggingface.co/EleutherAI/llemma_34b) | [Data](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | [Code](https://github.com/EleutherAI/math-lm) | [Blog](https://blog.eleuther.ai/llemma/) | [Sample Explorer](https://llemma-demo.github.io/)
[Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)
**Llemma 34B** is a language model for mathematics. It was initialized with [Code Llama 34B](https://github.com/facebookresearch/codellama) weights, and trained on the [Proof-Pile-2](https://huggingface.co/datasets/EleutherAI/proof-pile-2) for 50B tokens.
This model also comes in a 7B parameter version: [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b).
## Evaluations
Llemma models are particularly strong at chain-of-thought mathematical reasoning and using computational tools for mathematics, such as Python and formal theorem provers.
### Chain-of-thought Math
On chain-of-thought mathematics tasks, Llemma models outperform Llama-2, Code Llama, and when controlled for model size, outperform Minerva.
| Model | Size | GSM8k | [OCW](https://openreview.net/forum?id=IFXTZERXdM7) | MMLU-STEM | [SAT](https://huggingface.co/datasets/mcaleste/sat_multiple_choice_math_may_23) | MATH |
|------------|------|--------|-------|-----------|-------|-------|
| Llama 2 | 7B | 11.8% | 3.7% | 29.9% | 25% | 3.2% |
| Code Llama | 7B | 10.5% | 4.4% | 25.1% | 9.4% | 4.5% |
| LLEMMA | 7B | **36.4%** | **7.7%** | **37.7%** | **53.1%** | **18.0%** |
| Minerva | 8B | 16.2% | **7.7%** | 35.6% | - | 14.1% |
|------------|------|--------|-------|-----------|-------|-------|
| Code Llama | 34B | 29.6% | 7.0% | 40.5% | 40.6% | 12.2% |
| LLEMMA | 34B | **51.5%** | **11.8%** | **49.0%** | **71.9%** | **25.0%** |
|------------|------|--------|-------|-----------|-------|-------|
| Minerva | 62B | 52.4% | 12.0% | 53.9% | - | 27.6% |
| Minerva | 540B | 58.8% | 17.6% | 63.9% | - | 33.6% |
Further performance can be extracted by using majority voting:
| Model | Size | GSM8k maj@100 | OCW maj@100 | MMLU-STEM maj@16 | SAT maj@16 | MATH maj@256 |
|---------|------|-------------|-----------|-----------------|-----------|------------|
| LLEMMA | 7B | 54.0% | 14.3% | 49.9% | 78.1% | **33.5** |
| Minerva | 8B | 28.4% | 12.5% | 43.4% | - | 25.4% |
|---------|------|-------------|-----------|-----------------|-----------|------------|
| LLEMMA | 34B | 69.3% | 18.4% | 59.7% | 81.3% | **43.1%** |
|---------|------|-------------|-----------|-----------------|-----------|------------|
| Minerva | 62B | 68.5% | 23.5% | 63.5% | - | 43.4% |
| Minerva | 540B | 78.5% | 30.8% | 75.0% | - | 50.3% |
### Tool Use and Theorem Proving
In addition to chain-of-thought reasoning, Llemma has strong capabilities in computational mathematics tasks. For tool use and formal theorem proving evaluations, see [our paper](http://arxiv.org/abs/2310.10631).
### Citation
```
@misc{azerbayev2023llemma,
title={Llemma: An Open Language Model For Mathematics},
author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck},
year={2023},
eprint={2310.10631},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__llemma_34b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.34|
|AI2 Reasoning Challenge (25-Shot)|55.29|
|HellaSwag (10-Shot) |75.08|
|MMLU (5-Shot) |58.93|
|TruthfulQA (0-shot) |40.31|
|Winogrande (5-shot) |75.53|
|GSM8k (5-shot) |50.87|
|