--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: BERT_FPB_finetuned_v2 results: [] --- # BERT_FPB_finetuned_v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5430 - Accuracy: 0.8789 - F1: 0.8785 - Precision: 0.8784 - Recall: 0.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.611 | 1.0 | 218 | 0.4727 | 0.8170 | 0.8078 | 0.8356 | 0.8170 | | 0.4036 | 2.0 | 436 | 0.4077 | 0.8557 | 0.8525 | 0.8546 | 0.8557 | | 0.2149 | 3.0 | 654 | 0.4153 | 0.8711 | 0.8715 | 0.8723 | 0.8711 | | 0.067 | 4.0 | 872 | 0.5430 | 0.8789 | 0.8785 | 0.8784 | 0.8789 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Tokenizers 0.19.1