--- library_name: peft license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer model-index: - name: marvelous-pug-454 results: [] --- # marvelous-pug-454 This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Hamming Loss: 0.1123 - Zero One Loss: 1.0 - Jaccard Score: 1.0 - Hamming Loss Optimised: 0.1034 - Hamming Loss Threshold: 0.4079 - Zero One Loss Optimised: 0.7662 - Zero One Loss Threshold: 0.3351 - Jaccard Score Optimised: 0.7625 - Jaccard Score Threshold: 0.3149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.691774561796012e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.6553 | 0.3676 | 1.0 | 0.9280 | 0.1123 | 0.6566 | 0.95 | 0.5576 | 0.8863 | 0.2993 | | No log | 2.0 | 200 | 0.5073 | 0.1205 | 0.94 | 0.9381 | 0.1123 | 0.6530 | 0.8175 | 0.4434 | 0.7941 | 0.4421 | | No log | 3.0 | 300 | 0.4412 | 0.1121 | 0.9988 | 0.9988 | 0.1123 | 0.5944 | 0.7675 | 0.3659 | 0.7621 | 0.3681 | | No log | 4.0 | 400 | 0.4228 | 0.1123 | 1.0 | 1.0 | 0.109 | 0.4184 | 0.7675 | 0.3485 | 0.7631 | 0.3402 | | 0.5269 | 5.0 | 500 | 0.4151 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.5944 | 0.7675 | 0.3646 | 0.7990 | 0.2948 | | 0.5269 | 6.0 | 600 | 0.4109 | 0.1123 | 1.0 | 1.0 | 0.1051 | 0.4182 | 0.7662 | 0.3532 | 0.7631 | 0.3362 | | 0.5269 | 7.0 | 700 | 0.4084 | 0.1123 | 1.0 | 1.0 | 0.1046 | 0.4138 | 0.7662 | 0.3368 | 0.7638 | 0.3453 | | 0.5269 | 8.0 | 800 | 0.4059 | 0.1123 | 1.0 | 1.0 | 0.1031 | 0.4037 | 0.7662 | 0.3314 | 0.7612 | 0.3225 | | 0.5269 | 9.0 | 900 | 0.4051 | 0.1123 | 1.0 | 1.0 | 0.1032 | 0.4075 | 0.7662 | 0.3350 | 0.7619 | 0.3209 | | 0.4202 | 10.0 | 1000 | 0.4049 | 0.1123 | 1.0 | 1.0 | 0.1034 | 0.4079 | 0.7662 | 0.3351 | 0.7625 | 0.3149 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0