Chengyue Wu commited on
Commit
a0635c6
·
1 Parent(s): be8670b

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ llm/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,157 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - vila
7
+ - nvila
8
+ - conversational
9
+ - multimodal
10
+ ---
11
+
12
+ Dependency setups:
13
+
14
+ ```bash
15
+ # other transformers version may also work, but we have not tested
16
+ pip install transformers==4.46 accelerate opencv-python torchvision einops pillow
17
+ pip install git+https://github.com/bfshi/scaling_on_scales.git
18
+ ```
19
+
20
+ ## Usage
21
+
22
+ ```python
23
+ from transformers import AutoConfig, AutoModel
24
+ from termcolor import colored
25
+
26
+ model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
27
+
28
+ # you can use config
29
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
30
+ model = AutoModel.from_config(config, trust_remote_code=True)
31
+ # or directly from_pretrained
32
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
33
+
34
+ # examples generate with raw text
35
+ res = model.generate_content([
36
+ "how are you today?"
37
+ ])
38
+ print(colored(res, "cyan", attrs=["bold"]))
39
+
40
+ print("---" * 40)
41
+
42
+ # examples generate with text + image
43
+ import PIL.Image
44
+ response = model.generate_content([
45
+ PIL.Image.open("inference_test/test_data/caption_meat.jpeg"),
46
+ "describe the image?"
47
+ ])
48
+ print(colored(response, "cyan", attrs=["bold"]))
49
+ ```
50
+
51
+ ## AutoProcessor
52
+
53
+ we also support `AutoProcessor` class to ease data preparation for training and finetuning.
54
+
55
+
56
+ ### single call
57
+
58
+ ```python
59
+ from transformers import AutoProcessor, AutoModel
60
+
61
+ model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
62
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
63
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
64
+ # important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
65
+ model.eval()
66
+
67
+ gpt_conv = [{
68
+ "role": "user",
69
+ "content": [
70
+ {"type": "image", "path": "demo_images/demo_img_1.png"},
71
+ {"type": "text", "text": "Describe this image."}
72
+ ]
73
+ }]
74
+ text = processor.apply_chat_template(gpt_conv, tokenize=False, add_generation_prompt=True)
75
+ inputs = processor([text])
76
+
77
+ output_ids = model.generate(
78
+ input_ids=inputs.input_ids,
79
+ media=inputs.media,
80
+ media_config=inputs.media_config,
81
+ generation_config=model.generation_config,
82
+ max_new_tokens=256,
83
+ )
84
+ print(processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True))
85
+
86
+ ##### the above code is equivalent to
87
+ # response = model.generate_content([
88
+ # PIL.Image.open("demo_images/demo_img_1.png"),
89
+ # "describe the image?"
90
+ # ])
91
+ # print(colored(response, "cyan", attrs=["bold"]))
92
+ ```
93
+
94
+ ### batch call
95
+
96
+ ```python
97
+ from transformers import AutoProcessor, AutoModel
98
+
99
+ model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
100
+ model_path = "./NVILA-Lite-2B-hf-preview"
101
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
102
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
103
+ # important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
104
+ model.eval()
105
+
106
+ gpt_conv1 = [{
107
+ "role": "user",
108
+ "content": [
109
+ {"type": "image", "path": "demo_images/demo_img_1.png"},
110
+ {"type": "text", "text": "Describe this image."}
111
+ ]
112
+ }]
113
+ gpt_conv2 = [{
114
+ "role": "user",
115
+ "content": [
116
+ {"type": "image", "path": "demo_images/demo_img_2.png"},
117
+ {"type": "text", "text": "Describe this image for me. Provide a detailed description of the image."}
118
+ ]
119
+ }]
120
+
121
+ messages = [gpt_conv1, gpt_conv2]
122
+ texts = [
123
+ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
124
+ for msg in messages
125
+ ]
126
+ inputs = processor(texts)
127
+
128
+ output_ids = model.generate(
129
+ input_ids=inputs.input_ids,
130
+ media=inputs.media,
131
+ media_config=inputs.media_config,
132
+ generation_config=model.generation_config,
133
+ max_new_tokens=256,
134
+ )
135
+ output_texts = processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
136
+ print(output_texts[0])
137
+ print("---" * 40)
138
+ print(output_texts[1])
139
+ ```
140
+
141
+
142
+ ## Model Convert
143
+
144
+ The follwing code converts a convetional NVILA model to a HF compatible model.
145
+
146
+ ```python
147
+ import os, os.path as osp
148
+ from transformers import AutoConfig, AutoModel, AutoProcessor, AutoTokenizer, AutoImageProcessor
149
+
150
+ model_path = "Efficient-Large-Model/NVILA-Lite-2B"
151
+ output_dir = "NVILA-Lite-2B-hf-preview"
152
+
153
+ if osp.isdir(output_dir):
154
+ shutil.rmtree(output_dir)
155
+ from llava.remote_code.modeling_vila import VILAForCasualLM
156
+ VILAForCasualLM.convert_vila_dev_ckpt_to_remote(model_path, output_dir, copy=False)
157
+ ```
auto_processor.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import os.path as osp
3
+ from collections import defaultdict
4
+ from typing import List, Union
5
+
6
+ from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer
7
+ from transformers.feature_extraction_utils import BatchFeature
8
+ from transformers.image_utils import ImageInput, VideoInput
9
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
10
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
11
+ from transformers.utils import logging
12
+
13
+ from .constants import DEFAULT_IMAGE_TOKEN, MEDIA_TOKENS
14
+ from .media import Image, Video, extract_media
15
+ from .mm_utils import process_image, process_images
16
+ from .tokenizer_utils import tokenize_conversation
17
+
18
+
19
+ class VILAProcessorKwargs(ProcessingKwargs, total=False):
20
+ _defaults = {
21
+ "text_kwargs": {
22
+ "padding": False,
23
+ },
24
+ }
25
+
26
+
27
+ class VILAProcessor(ProcessorMixin):
28
+ # attributes = ["image_processor", "tokenizer"]
29
+ attributes = []
30
+ # valid_kwargs = ["chat_template"]
31
+ valid_kwargs = []
32
+ # image_processor_class = "VILAImageProcessor"
33
+ # tokenizer_class = ("VILATokenizer", "VILATokenizerFast")
34
+
35
+ def __init__(self, image_processor=None, tokenizer=None, chat_template=None, config=None, **kwargs):
36
+ # self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
37
+ # self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
38
+ self.image_token = MEDIA_TOKENS["image"]
39
+ self.video_token = MEDIA_TOKENS["video"]
40
+ self.config = config
41
+ self.image_processor = image_processor
42
+ self.tokenizer = tokenizer
43
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
44
+
45
+ @classmethod
46
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
47
+ if os.path.isdir(pretrained_model_name_or_path):
48
+ pretrained_model_name_or_path = pretrained_model_name_or_path
49
+ else:
50
+ print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading")
51
+ from huggingface_hub import HfApi, snapshot_download
52
+
53
+ pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
54
+
55
+ image_processor = AutoImageProcessor.from_pretrained(
56
+ osp.join(pretrained_model_name_or_path, "vision_tower"), trust_remote_code=True
57
+ )
58
+ tokenizer = AutoTokenizer.from_pretrained(
59
+ osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True
60
+ )
61
+ config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
62
+
63
+ return cls(image_processor=image_processor, tokenizer=tokenizer, config=config)
64
+
65
+ def __repr__(self):
66
+ return (
67
+ f"VILAProcessor(image_processor={self.image_processor}, tokenizer={self.tokenizer}, config={self.config})"
68
+ )
69
+
70
+ def __call__(
71
+ self,
72
+ conversation,
73
+ images: ImageInput = None,
74
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
75
+ videos: VideoInput = None,
76
+ **kwargs: Unpack[VILAProcessorKwargs],
77
+ ) -> BatchFeature:
78
+ # TODO: should be merged with llava_arch.py/generate_content()
79
+ # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
80
+ media = extract_media(conversation, self.config)
81
+ # Process media
82
+ media_config = defaultdict(dict)
83
+ for name in media:
84
+ if name == "image":
85
+ if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
86
+ self.config.image_processor = self.image_processor
87
+ if self.config.image_aspect_ratio == "dynamic":
88
+ images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
89
+ conversation[0]["value"] = conversation[0]["value"].replace(
90
+ DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
91
+ )
92
+ else:
93
+ if type(self.config.s2_scales) is str:
94
+ self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
95
+ images, block_sizes = process_image(
96
+ media["image"][0], self.config, None, enable_dynamic_s2=True
97
+ )
98
+ images = images.half()
99
+ media_config[name]["block_sizes"] = [block_sizes]
100
+ else:
101
+ images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
102
+ media[name] = [image for image in images]
103
+ elif name == "video":
104
+ media[name] = [
105
+ process_images(images, self.vision_tower.image_processor, self.config).half()
106
+ for images in media[name]
107
+ ]
108
+ else:
109
+ raise ValueError(f"Unsupported media type: {name}")
110
+
111
+ input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
112
+ # Set up the generation config
113
+ # print(input_ids.shape); print(media); input()
114
+ return BatchFeature(data={"input_ids": input_ids, **media})
115
+
116
+ def batch_decode(self, *args, **kwargs):
117
+ """
118
+ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
119
+ refer to the docstring of this method for more information.
120
+ """
121
+ return self.tokenizer.batch_decode(*args, **kwargs)
122
+
123
+ def decode(self, *args, **kwargs):
124
+ """
125
+ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
126
+ the docstring of this method for more information.
127
+ """
128
+ return self.tokenizer.decode(*args, **kwargs)
129
+
130
+ def post_process_image_text_to_text(self, generated_outputs):
131
+ """
132
+ Post-process the output of the model to decode the text.
133
+
134
+ Args:
135
+ generated_outputs (`torch.Tensor` or `np.ndarray`):
136
+ The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
137
+ or `(sequence_length,)`.
138
+
139
+ Returns:
140
+ `List[str]`: The decoded text.
141
+ """
142
+ return self.tokenizer.batch_decode(
143
+ generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
144
+ )
145
+
146
+ @property
147
+ def model_input_names(self):
148
+ tokenizer_input_names = self.tokenizer.model_input_names
149
+ image_processor_input_names = self.image_processor.model_input_names
150
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
151
+
152
+ # inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
153
+ def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs):
154
+ vila_conv = []
155
+
156
+ for chat in conversation:
157
+ vila_chat = {"from": "", "value": []}
158
+ if chat["role"] == "user":
159
+ # user allows to input image and text
160
+ vila_chat["from"] = "human"
161
+ for content in chat["content"]:
162
+ if content["type"] == "image":
163
+ vila_chat["value"].append(Image(content["path"]))
164
+ elif content["type"] == "text":
165
+ vila_chat["value"].append(content["text"])
166
+ else:
167
+ raise ValueError(f"Unsupported content type: {content['type']}")
168
+ elif chat["role"] == "assistant":
169
+ vila_chat["from"] = "gpt"
170
+ for content in chat["content"]:
171
+ assert content["type"] == "text", f"Unsupported content type: {content['type']}"
172
+ vila_chat["value"].append(content["text"])
173
+ vila_conv.append(vila_chat)
174
+
175
+ return self(vila_conv)
176
+
177
+
178
+ if __name__ == "__main__":
179
+ # gpt style: user, assistant
180
+ # vila style: human, gpt
181
+ gpt_conv = [
182
+ {
183
+ "role": "user",
184
+ "content": [
185
+ {"type": "image", "path": "demo_images/demo_img_1.png"},
186
+ {"type": "text", "text": "Describe this image."},
187
+ ],
188
+ }
189
+ ]
190
+
191
+ llavaconv = [
192
+ {
193
+ "from": "human",
194
+ "value": [
195
+ PIL.Image.open("demo_images/demo_img_1.png"),
196
+ "Describe this image.",
197
+ ],
198
+ }
199
+ ]
200
+
201
+ processor = AutoProcessor.from_pretrained(output_dir, trust_remote_code=True)
202
+ inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
203
+ # model = llava.load("Efficient-Large-Model/qwen25_2B_3x3-sft").cuda()
204
+ # print(model)
205
+ model_path = "NVILA-Lite-2B-hf-preview"
206
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
207
+ # res = model.generate_content(["how are you today?"])
208
+ # print(model.config)
209
+ # print(model.tokenizer)
210
+ # print(res)
211
+ # exit(0)
212
+
213
+ processor = VILAProcessor(
214
+ config=model.config,
215
+ image_processor=model.vision_tower.image_processor,
216
+ tokenizer=model.tokenizer,
217
+ )
218
+
219
+ # TODO: add padding, return_tensors,
220
+ inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
221
+ print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
222
+ print("vila conv pass")
223
+
224
+ inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
225
+ print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
226
+ print("gpt conv pass")
227
+
228
+ output_ids = model.generate(
229
+ input_ids=inputs.input_ids,
230
+ media={
231
+ "image": inputs.image,
232
+ },
233
+ media_config={"image": {}},
234
+ generation_config=model.generation_config,
235
+ max_new_tokens=100,
236
+ )
237
+ print(output_ids)
base_projector.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import re
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel
22
+
23
+
24
+ class IdentityMap(nn.Module):
25
+ def __init__(self):
26
+ super().__init__()
27
+
28
+ def forward(self, x, *args, **kwargs):
29
+ return x
30
+
31
+ @property
32
+ def config(self):
33
+ return {"mm_projector_type": "identity"}
34
+
35
+
36
+ class SimpleResBlock(nn.Module):
37
+ def __init__(self, channels):
38
+ super().__init__()
39
+ self.pre_norm = nn.LayerNorm(channels)
40
+
41
+ self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels))
42
+
43
+ def forward(self, x):
44
+ x = self.pre_norm(x)
45
+ return x + self.proj(x)
46
+
47
+
48
+ class DownSampleBlock(nn.Module):
49
+ def forward(self, x):
50
+ vit_embeds = x
51
+ h = w = int(vit_embeds.shape[1] ** 0.5)
52
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
53
+ vit_embeds = self.flat_square(vit_embeds)
54
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
55
+ return vit_embeds
56
+
57
+ def flat_square(self, x):
58
+ n, w, h, c = x.size()
59
+ if w % 2 == 1:
60
+ x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
61
+ n, w, h, c = x.size()
62
+ if h % 2 == 1:
63
+ x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
64
+ n, w, h, c = x.size()
65
+ x = x.contiguous()
66
+ x = x.view(n, w, int(h / 2), int(c * 2))
67
+ x = x.permute(0, 2, 1, 3).contiguous()
68
+ x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
69
+ x = x.permute(0, 2, 1, 3).contiguous()
70
+ return x
71
+
72
+
73
+ class DownSample2x2BlockFix(nn.Module):
74
+ def forward(self, x):
75
+ vit_embeds = x
76
+ h = w = int(vit_embeds.shape[1] ** 0.5)
77
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
78
+ vit_embeds = flat_square_2x2(vit_embeds)
79
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
80
+ return vit_embeds
81
+
82
+
83
+ def flat_square_2x2(x):
84
+ n, w, h, c = x.size()
85
+ if w % 2 == 1:
86
+ x = torch.concat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
87
+ n, w, h, c = x.size()
88
+ x = x.contiguous()
89
+ if h % 2 == 1:
90
+ x = torch.concat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
91
+ n, w, h, c = x.size()
92
+ x = x.view(n, w, int(h / 2), int(c * 2))
93
+ x = x.permute(0, 2, 1, 3).contiguous()
94
+ x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
95
+ x = x.permute(0, 2, 1, 3).contiguous()
96
+ return x
97
+
98
+
99
+ class DownSample3x3BlockFix(nn.Module):
100
+ def forward(self, x):
101
+ vit_embeds = x
102
+ h = w = int(vit_embeds.shape[1] ** 0.5)
103
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
104
+ vit_embeds = flat_square_3x3(vit_embeds)
105
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
106
+ return vit_embeds
107
+
108
+
109
+ def flat_square_3x3(x):
110
+ n, w, h, c = x.size()
111
+ if w % 3 != 0:
112
+ x = torch.concat([x, torch.zeros((n, 3 - (w % 3), h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
113
+ n, w, h, c = x.size()
114
+ x = x.contiguous()
115
+ if h % 3 != 0:
116
+ x = torch.concat([x, torch.zeros((n, w, 3 - (h % 3), c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
117
+ n, w, h, c = x.size()
118
+ x = x.view(n, w, int(h / 3), int(c * 3))
119
+ x = x.permute(0, 2, 1, 3).contiguous()
120
+ x = x.view(n, int(h / 3), int(w / 3), int(c * 9))
121
+ x = x.permute(0, 2, 1, 3).contiguous()
122
+ return x
123
+
124
+
125
+ class MultimodalProjectorConfig(PretrainedConfig):
126
+ model_type = "v2l_projector"
127
+
128
+ def __init__(self, mm_projector_type: str = None, **kwargs):
129
+ super().__init__()
130
+ self.mm_projector_type = mm_projector_type
131
+
132
+
133
+ class MultimodalProjector(PreTrainedModel):
134
+ config_class = MultimodalProjectorConfig
135
+
136
+ def __init__(self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig):
137
+ super().__init__(mm_projector_cfg)
138
+ mm_projector_type = mm_projector_cfg.mm_projector_type
139
+ self.downsample_rate = 1
140
+ if mm_projector_type == "identity":
141
+ self.layers = IdentityMap()
142
+ elif mm_projector_type == "linear":
143
+ self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
144
+ elif mm_projector_type == "mlp_downsample":
145
+ self.layers = nn.Sequential(
146
+ DownSampleBlock(),
147
+ nn.LayerNorm(config.mm_hidden_size * 4),
148
+ nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
149
+ nn.GELU(),
150
+ nn.Linear(config.hidden_size, config.hidden_size),
151
+ )
152
+ self.downsample_rate = 2
153
+ elif mm_projector_type == "mlp_downsample_2x2_fix":
154
+ self.layers = nn.Sequential(
155
+ DownSample2x2BlockFix(),
156
+ nn.LayerNorm(config.mm_hidden_size * 4),
157
+ nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
158
+ nn.GELU(),
159
+ nn.Linear(config.hidden_size, config.hidden_size),
160
+ )
161
+ self.downsample_rate = 2
162
+ elif mm_projector_type == "mlp_downsample_3x3_fix":
163
+ self.layers = nn.Sequential(
164
+ DownSample3x3BlockFix(),
165
+ nn.LayerNorm(config.mm_hidden_size * 9),
166
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
167
+ nn.GELU(),
168
+ nn.LayerNorm(config.mm_hidden_size * 3),
169
+ nn.Linear(config.mm_hidden_size * 3, config.hidden_size),
170
+ nn.GELU(),
171
+ nn.Linear(config.hidden_size, config.hidden_size),
172
+ )
173
+ self.downsample_rate = 3
174
+ elif mm_projector_type == "mlp_downsample_3x3_s2":
175
+ self.layers = nn.Sequential(
176
+ DownSample3x3BlockFix(),
177
+ nn.LayerNorm(config.mm_hidden_size * 9),
178
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 3),
179
+ nn.GELU(),
180
+ nn.LayerNorm(config.mm_hidden_size * 3),
181
+ nn.Linear(config.mm_hidden_size * 3, config.mm_hidden_size),
182
+ nn.GELU(),
183
+ nn.LayerNorm(config.mm_hidden_size),
184
+ nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
185
+ nn.GELU(),
186
+ nn.LayerNorm(config.mm_hidden_size // 3),
187
+ nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
188
+ nn.GELU(),
189
+ nn.Linear(config.hidden_size, config.hidden_size),
190
+ )
191
+ elif mm_projector_type == "mlp_downsample_3x3_s2_new":
192
+ self.layers = nn.Sequential(
193
+ DownSample3x3BlockFix(),
194
+ nn.LayerNorm(config.mm_hidden_size * 9),
195
+ nn.Linear(config.mm_hidden_size * 9, config.mm_hidden_size * 4),
196
+ nn.GELU(),
197
+ nn.LayerNorm(config.mm_hidden_size * 4),
198
+ nn.Linear(config.mm_hidden_size * 4, config.mm_hidden_size * 2),
199
+ nn.GELU(),
200
+ nn.LayerNorm(config.mm_hidden_size * 2),
201
+ nn.Linear(config.mm_hidden_size * 2, config.mm_hidden_size),
202
+ nn.GELU(),
203
+ nn.LayerNorm(config.mm_hidden_size),
204
+ nn.Linear(config.mm_hidden_size, config.mm_hidden_size // 3),
205
+ nn.GELU(),
206
+ nn.LayerNorm(config.mm_hidden_size // 3),
207
+ nn.Linear(config.mm_hidden_size // 3, config.hidden_size),
208
+ nn.GELU(),
209
+ nn.Linear(config.hidden_size, config.hidden_size),
210
+ )
211
+ else:
212
+ mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
213
+ if mlp_gelu_match:
214
+ mlp_depth = int(mlp_gelu_match.group(1))
215
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
216
+ for _ in range(1, mlp_depth):
217
+ modules.append(nn.GELU())
218
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
219
+ self.layers = nn.Sequential(*modules)
220
+ else:
221
+ raise ValueError(f"Unknown projector type: {mm_projector_type}")
222
+
223
+ def forward(self, x, *args, **kwargs):
224
+ return self.layers(x)
225
+
226
+
227
+ # AutoConfig.register("v2l_projector", MultimodalProjectorConfig)
228
+ # AutoModel.register(MultimodalProjectorConfig, MultimodalProjector)
builder.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import math
18
+ import os
19
+ import os.path as osp
20
+ import warnings
21
+ from dataclasses import asdict
22
+ from typing import Any, Dict, List, Optional, Sequence, Tuple
23
+
24
+ import torch
25
+ import transformers
26
+ from huggingface_hub import file_exists, repo_exists
27
+ from huggingface_hub.utils import HFValidationError
28
+ from transformers import (
29
+ AutoConfig,
30
+ AutoModelForCausalLM,
31
+ AutoTokenizer,
32
+ PretrainedConfig,
33
+ PreTrainedModel,
34
+ PreTrainedTokenizer,
35
+ )
36
+
37
+ # from .conversation import *
38
+ from .conversation import SeparatorStyle, default_conversation
39
+
40
+ SENTINEL_TOKEN = "<vila/sentinel>"
41
+ MEDIA_TOKENS = {
42
+ "image": "<image>",
43
+ "video": "<vila/video>",
44
+ }
45
+
46
+ # from llava.model.utils import packing
47
+ # from llava.utils.logging import logger
48
+ # from llava.utils.tokenizer import infer_stop_tokens
49
+
50
+ DUMMY_CONVERSATION = [
51
+ {"from": "human", "value": "question"},
52
+ {"from": "gpt", "value": "answer"},
53
+ ] * 10
54
+
55
+
56
+ def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
57
+ return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
58
+
59
+
60
+ def has_tokenizer(repo_id_or_path: str) -> bool:
61
+ # Check if the tokenizer is in a local directory
62
+ if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
63
+ return True
64
+
65
+ # Check if the tokenizer is in a Hugging Face Hub repo
66
+ try:
67
+ return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json")
68
+ except HFValidationError:
69
+ return False
70
+
71
+
72
+ def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
73
+ if not hasattr(tokenizer, "sentinel_token"):
74
+ tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
75
+ tokenizer.sentinel_token = SENTINEL_TOKEN
76
+ tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
77
+
78
+
79
+ def tokenize_conversation_legacy(
80
+ messages: Sequence[Dict[str, str]],
81
+ tokenizer: transformers.PreTrainedTokenizer,
82
+ add_generation_prompt: bool = False,
83
+ overrides: Optional[Dict[str, str]] = None,
84
+ no_system_prompt: bool = False,
85
+ ) -> torch.Tensor:
86
+ conv = default_conversation.copy()
87
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
88
+
89
+ if no_system_prompt:
90
+ conv.system = ""
91
+
92
+ # Skip the first message if it is not from human
93
+ if messages[0]["from"] != "human":
94
+ messages = messages[1:]
95
+
96
+ # Add a generation prompt if needed
97
+ if add_generation_prompt:
98
+ messages.append({"from": "gpt", "value": None})
99
+
100
+ conv.messages = []
101
+ for turn, message in enumerate(messages):
102
+ role = roles[message["from"]]
103
+ assert role == conv.roles[turn % 2]
104
+ if overrides is not None and message["from"] in overrides:
105
+ conv.append_message(role, overrides[message["from"]])
106
+ else:
107
+ conv.append_message(role, message["value"])
108
+
109
+ return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
110
+
111
+
112
+ def tokenize_conversation(
113
+ messages: Sequence[Dict[str, str]],
114
+ tokenizer: transformers.PreTrainedTokenizer,
115
+ add_generation_prompt: bool = False,
116
+ overrides: Optional[Dict[str, str]] = None,
117
+ no_system_prompt: bool = False,
118
+ ) -> torch.Tensor:
119
+ # Normalize the conversation before tokenization
120
+ for message in messages:
121
+ message["value"] = message["value"].strip()
122
+
123
+ if default_conversation.sep_style != SeparatorStyle.AUTO:
124
+ return tokenize_conversation_legacy(
125
+ messages,
126
+ tokenizer,
127
+ add_generation_prompt=add_generation_prompt,
128
+ overrides=overrides,
129
+ no_system_prompt=no_system_prompt,
130
+ )
131
+
132
+ conversation = []
133
+ for m in messages:
134
+ message = {}
135
+ if m["from"] == "human":
136
+ message["role"] = "user"
137
+ elif m["from"] == "gpt":
138
+ message["role"] = "assistant"
139
+ else:
140
+ raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
141
+
142
+ message["content"] = m["value"]
143
+ if overrides is not None and m["from"] in overrides:
144
+ message["content"] = overrides[m["from"]]
145
+ conversation.append(message)
146
+
147
+ if no_system_prompt:
148
+ conversation = [{"role": "system", "content": ""}] + conversation
149
+
150
+ text = tokenizer.apply_chat_template(
151
+ conversation,
152
+ add_generation_prompt=add_generation_prompt,
153
+ tokenize=False,
154
+ )
155
+ return tokenizer_image_token(text, tokenizer, return_tensors="pt")
156
+
157
+
158
+ def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
159
+ _maybe_add_sentinel_token(tokenizer)
160
+ template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
161
+
162
+ stop_tokens = {tokenizer.eos_token}
163
+ for k in range(template.size(0) - 1):
164
+ if template[k] == tokenizer.sentinel_token_id:
165
+ stop_token = tokenizer.decode(template[k + 1])
166
+ stop_tokens.add(stop_token)
167
+ return list(stop_tokens)
168
+
169
+
170
+ def context_length_extension(config):
171
+ orig_ctx_len = getattr(config, "max_position_embeddings", None)
172
+ model_max_length = getattr(config, "model_max_length", None)
173
+ if orig_ctx_len and model_max_length > orig_ctx_len:
174
+ print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
175
+ scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
176
+ config.rope_scaling = {"type": "linear", "factor": scaling_factor}
177
+ return config
178
+
179
+
180
+ def build_llm_and_tokenizer(
181
+ model_name_or_path: str,
182
+ config: PretrainedConfig,
183
+ attn_implementation=None,
184
+ model_max_length=None,
185
+ *args,
186
+ **kwargs,
187
+ ) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
188
+ # print(model_name_or_path)
189
+ llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
190
+ llm_cfg._attn_implementation = attn_implementation
191
+ llm_cfg.model_max_length = model_max_length
192
+ if model_max_length is not None:
193
+ context_length_extension(llm_cfg)
194
+
195
+ # Quantization related
196
+ quantization_restore_from_checkpoint = False
197
+
198
+ if quantization_restore_from_checkpoint:
199
+ fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None)
200
+
201
+ llm = AutoModelForCausalLM.from_pretrained(
202
+ fp8_model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
203
+ )
204
+ else:
205
+ llm = AutoModelForCausalLM.from_pretrained(
206
+ model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
207
+ )
208
+ # NOTE(ligeng): not sure whether it affects the training
209
+ # packing.patch(llm)
210
+
211
+ # Locate the tokenizer.
212
+ llm_path = model_name_or_path
213
+ if not has_tokenizer(llm_path):
214
+ llm_path = osp.join(llm_path, "llm")
215
+ if not has_tokenizer(llm_path):
216
+ raise ValueError(f"Cannot find tokenizer in {llm_path}.")
217
+
218
+ tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False)
219
+ if model_max_length is not None:
220
+ tokenizer.model_max_length = model_max_length
221
+
222
+ # Load chat template if specified.
223
+ if getattr(config, "chat_template", None) is not None:
224
+ print(f"Using chat template: {config.chat_template}")
225
+ fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
226
+ if not os.path.exists(fpath):
227
+ fpath = os.path.join(os.path.dirname(model_name_or_path), f"{config.chat_template}.jinja")
228
+ with open(fpath) as fd:
229
+ chat_template = fd.read()
230
+ tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
231
+
232
+ # Set stop tokens for the tokenizer
233
+ tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
234
+ tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)
235
+
236
+ # Add media tokens to the tokenizer
237
+ tokenizer.media_tokens = MEDIA_TOKENS
238
+ tokenizer.media_token_ids = {}
239
+ for name, token in MEDIA_TOKENS.items():
240
+ tokenizer.add_tokens([token], special_tokens=True)
241
+ tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)
242
+
243
+ # TODO(ligeng): is this necessary for llava?
244
+ config.hidden_size = llm.config.hidden_size
245
+ return llm, tokenizer
config.json ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Ubit": 100,
3
+ "_attn_implementation_autoset": true,
4
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model",
5
+ "architectures": [
6
+ "VILAForCasualLM"
7
+ ],
8
+ "babit": "E5M2",
9
+ "bobit": "E5M2",
10
+ "bwbit": "E5M2",
11
+ "chat_template": null,
12
+ "col_blocksize": -1,
13
+ "col_blocksize_optimizer": 128,
14
+ "draw_distribution_backward": false,
15
+ "draw_distribution_forward": false,
16
+ "drop_path_rate": 0.0,
17
+ "dynamic_s2": false,
18
+ "epsilon": 1e-10,
19
+ "epsilon_optimizer": 1e-15,
20
+ "fabit": "E4M3",
21
+ "first_order_bit": null,
22
+ "first_order_quant_type": null,
23
+ "fobit": "E4M3",
24
+ "fps": 0.0,
25
+ "fwbit": "E4M3",
26
+ "group_size": -1,
27
+ "hidden_size": 1536,
28
+ "image_aspect_ratio": "dynamic",
29
+ "image_encoder": {
30
+ "_target_": "llava.model.encoders.BasicImageEncoder"
31
+ },
32
+ "interpolate_mode": "linear",
33
+ "llm_cfg": {
34
+ "_attn_implementation_autoset": false,
35
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/llm",
36
+ "add_cross_attention": false,
37
+ "architectures": [
38
+ "Qwen2ForCausalLM"
39
+ ],
40
+ "attention_dropout": 0.0,
41
+ "bad_words_ids": null,
42
+ "begin_suppress_tokens": null,
43
+ "bos_token_id": 151643,
44
+ "chunk_size_feed_forward": 0,
45
+ "cross_attention_hidden_size": null,
46
+ "decoder_start_token_id": null,
47
+ "diversity_penalty": 0.0,
48
+ "do_sample": false,
49
+ "early_stopping": false,
50
+ "encoder_no_repeat_ngram_size": 0,
51
+ "eos_token_id": 151645,
52
+ "exponential_decay_length_penalty": null,
53
+ "finetuning_task": null,
54
+ "forced_bos_token_id": null,
55
+ "forced_eos_token_id": null,
56
+ "hidden_act": "silu",
57
+ "hidden_size": 1536,
58
+ "id2label": {
59
+ "0": "LABEL_0",
60
+ "1": "LABEL_1"
61
+ },
62
+ "initializer_range": 0.02,
63
+ "intermediate_size": 8960,
64
+ "is_decoder": false,
65
+ "is_encoder_decoder": false,
66
+ "label2id": {
67
+ "LABEL_0": 0,
68
+ "LABEL_1": 1
69
+ },
70
+ "length_penalty": 1.0,
71
+ "max_length": 20,
72
+ "max_position_embeddings": 32768,
73
+ "max_window_layers": 28,
74
+ "min_length": 0,
75
+ "model_max_length": 4096,
76
+ "model_type": "qwen2",
77
+ "no_repeat_ngram_size": 0,
78
+ "num_attention_heads": 12,
79
+ "num_beam_groups": 1,
80
+ "num_beams": 1,
81
+ "num_hidden_layers": 28,
82
+ "num_key_value_heads": 2,
83
+ "num_return_sequences": 1,
84
+ "output_attentions": false,
85
+ "output_hidden_states": false,
86
+ "output_scores": false,
87
+ "pad_token_id": null,
88
+ "prefix": null,
89
+ "problem_type": null,
90
+ "pruned_heads": {},
91
+ "remove_invalid_values": false,
92
+ "repetition_penalty": 1.0,
93
+ "return_dict": true,
94
+ "return_dict_in_generate": false,
95
+ "rms_norm_eps": 1e-06,
96
+ "rope_scaling": null,
97
+ "rope_theta": 1000000.0,
98
+ "sep_token_id": null,
99
+ "sliding_window": null,
100
+ "suppress_tokens": null,
101
+ "task_specific_params": null,
102
+ "temperature": 1.0,
103
+ "tf_legacy_loss": false,
104
+ "tie_encoder_decoder": false,
105
+ "tie_word_embeddings": true,
106
+ "tokenizer_class": null,
107
+ "tokenizer_model_max_length": 4096,
108
+ "tokenizer_padding_side": "right",
109
+ "top_k": 50,
110
+ "top_p": 1.0,
111
+ "torch_dtype": "bfloat16",
112
+ "torchscript": false,
113
+ "typical_p": 1.0,
114
+ "use_bfloat16": false,
115
+ "use_cache": true,
116
+ "use_sliding_window": false,
117
+ "vocab_size": 151651
118
+ },
119
+ "max_tiles": 12,
120
+ "min_blockunit_col": 4,
121
+ "min_blockunit_row": 4,
122
+ "min_tiles": 1,
123
+ "mlp_path": null,
124
+ "mm_hidden_size": 1152,
125
+ "mm_projector": "mlp_downsample_3x3_fix",
126
+ "mm_projector_cfg": {
127
+ "_attn_implementation_autoset": false,
128
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/mm_projector",
129
+ "add_cross_attention": false,
130
+ "architectures": [
131
+ "MultimodalProjector"
132
+ ],
133
+ "bad_words_ids": null,
134
+ "begin_suppress_tokens": null,
135
+ "bos_token_id": null,
136
+ "chunk_size_feed_forward": 0,
137
+ "cross_attention_hidden_size": null,
138
+ "decoder_start_token_id": null,
139
+ "diversity_penalty": 0.0,
140
+ "do_sample": false,
141
+ "early_stopping": false,
142
+ "encoder_no_repeat_ngram_size": 0,
143
+ "eos_token_id": null,
144
+ "exponential_decay_length_penalty": null,
145
+ "finetuning_task": null,
146
+ "forced_bos_token_id": null,
147
+ "forced_eos_token_id": null,
148
+ "id2label": {
149
+ "0": "LABEL_0",
150
+ "1": "LABEL_1"
151
+ },
152
+ "is_decoder": false,
153
+ "is_encoder_decoder": false,
154
+ "label2id": {
155
+ "LABEL_0": 0,
156
+ "LABEL_1": 1
157
+ },
158
+ "length_penalty": 1.0,
159
+ "max_length": 20,
160
+ "min_length": 0,
161
+ "mm_projector_type": "mlp_downsample_3x3_fix",
162
+ "model_type": "v2l_projector",
163
+ "no_repeat_ngram_size": 0,
164
+ "num_beam_groups": 1,
165
+ "num_beams": 1,
166
+ "num_return_sequences": 1,
167
+ "output_attentions": false,
168
+ "output_hidden_states": false,
169
+ "output_scores": false,
170
+ "pad_token_id": null,
171
+ "prefix": null,
172
+ "problem_type": null,
173
+ "pruned_heads": {},
174
+ "remove_invalid_values": false,
175
+ "repetition_penalty": 1.0,
176
+ "return_dict": true,
177
+ "return_dict_in_generate": false,
178
+ "sep_token_id": null,
179
+ "suppress_tokens": null,
180
+ "task_specific_params": null,
181
+ "temperature": 1.0,
182
+ "tf_legacy_loss": false,
183
+ "tie_encoder_decoder": false,
184
+ "tie_word_embeddings": true,
185
+ "tokenizer_class": null,
186
+ "top_k": 50,
187
+ "top_p": 1.0,
188
+ "torch_dtype": "bfloat16",
189
+ "torchscript": false,
190
+ "typical_p": 1.0,
191
+ "use_bfloat16": false
192
+ },
193
+ "mm_projector_lr": null,
194
+ "mm_use_im_patch_token": false,
195
+ "mm_use_im_start_end": false,
196
+ "mm_vision_select_feature": "cls_patch",
197
+ "mm_vision_select_layer": -2,
198
+ "model_dtype": "torch.bfloat16",
199
+ "model_name_or_path": "Efficient-Large-Model/NVILA-Lite-2B",
200
+ "model_type": "vila",
201
+ "num_time_tokens": 0,
202
+ "num_video_frames": 8,
203
+ "pad_block": false,
204
+ "pad_to_multiple_of": 0,
205
+ "qchoice": "none",
206
+ "quantize_model": false,
207
+ "refine_attn_blocksize": false,
208
+ "refine_col_blocksize": 4,
209
+ "refine_ln_blocksize": false,
210
+ "refine_ln_blocksize_but_only_backward": false,
211
+ "refine_ln_blocksize_but_only_forward": false,
212
+ "refine_ln_pertoken": false,
213
+ "refine_mlp_blocksize": false,
214
+ "refine_residual_fp": false,
215
+ "refine_row_blocksize": 4,
216
+ "resume_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model",
217
+ "row_blocksize": -1,
218
+ "row_blocksize_optimizer": 1,
219
+ "s2": false,
220
+ "s2_max_split_size": 336,
221
+ "s2_resize_output_to_scale_idx": 0,
222
+ "s2_scales": "336,672,1008",
223
+ "second_order_bit": null,
224
+ "second_order_quant_type": null,
225
+ "soft_ce_std": 1.0,
226
+ "symm": true,
227
+ "time_token_format": "<t{t}>",
228
+ "time_token_ids": [],
229
+ "transformers_version": "4.46.0",
230
+ "tune_language_model": true,
231
+ "tune_mm_projector": true,
232
+ "tune_vision_tower": true,
233
+ "use_quantize_optimizer": false,
234
+ "version": "2.0",
235
+ "video_encoder": {
236
+ "_target_": "llava.model.encoders.BasicVideoEncoder"
237
+ },
238
+ "video_max_tiles": 1,
239
+ "vision_resolution": -1,
240
+ "vision_tower": "Efficient-Large-Model/paligemma-siglip-so400m-patch14-448",
241
+ "vision_tower_cfg": {
242
+ "_attn_implementation_autoset": false,
243
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/vision_tower",
244
+ "add_cross_attention": false,
245
+ "architectures": [
246
+ "SiglipVisionModel"
247
+ ],
248
+ "attention_dropout": 0.0,
249
+ "bad_words_ids": null,
250
+ "begin_suppress_tokens": null,
251
+ "bos_token_id": null,
252
+ "chunk_size_feed_forward": 0,
253
+ "cross_attention_hidden_size": null,
254
+ "decoder_start_token_id": null,
255
+ "diversity_penalty": 0.0,
256
+ "do_sample": false,
257
+ "early_stopping": false,
258
+ "encoder_no_repeat_ngram_size": 0,
259
+ "eos_token_id": null,
260
+ "exponential_decay_length_penalty": null,
261
+ "finetuning_task": null,
262
+ "forced_bos_token_id": null,
263
+ "forced_eos_token_id": null,
264
+ "hidden_act": "gelu_pytorch_tanh",
265
+ "hidden_size": 1152,
266
+ "id2label": {
267
+ "0": "LABEL_0",
268
+ "1": "LABEL_1"
269
+ },
270
+ "image_size": 448,
271
+ "intermediate_size": 4304,
272
+ "is_decoder": false,
273
+ "is_encoder_decoder": false,
274
+ "label2id": {
275
+ "LABEL_0": 0,
276
+ "LABEL_1": 1
277
+ },
278
+ "layer_norm_eps": 1e-06,
279
+ "length_penalty": 1.0,
280
+ "max_length": 20,
281
+ "min_length": 0,
282
+ "model_type": "siglip_vision_model",
283
+ "no_repeat_ngram_size": 0,
284
+ "num_attention_heads": 16,
285
+ "num_beam_groups": 1,
286
+ "num_beams": 1,
287
+ "num_channels": 3,
288
+ "num_hidden_layers": 27,
289
+ "num_image_tokens": 256,
290
+ "num_return_sequences": 1,
291
+ "output_attentions": false,
292
+ "output_hidden_states": false,
293
+ "output_scores": false,
294
+ "pad_token_id": null,
295
+ "patch_size": 14,
296
+ "prefix": null,
297
+ "problem_type": null,
298
+ "projection_dim": 2048,
299
+ "projector_hidden_act": "gelu_fast",
300
+ "pruned_heads": {},
301
+ "remove_invalid_values": false,
302
+ "repetition_penalty": 1.0,
303
+ "return_dict": true,
304
+ "return_dict_in_generate": false,
305
+ "sep_token_id": null,
306
+ "suppress_tokens": null,
307
+ "task_specific_params": null,
308
+ "temperature": 1.0,
309
+ "tf_legacy_loss": false,
310
+ "tie_encoder_decoder": false,
311
+ "tie_word_embeddings": true,
312
+ "tokenizer_class": null,
313
+ "top_k": 50,
314
+ "top_p": 1.0,
315
+ "torch_dtype": "bfloat16",
316
+ "torchscript": false,
317
+ "typical_p": 1.0,
318
+ "use_bfloat16": false,
319
+ "vision_use_head": false
320
+ },
321
+ "vision_tower_lr": null,
322
+ "weight_memory_efficient": true,
323
+ "auto_map": {
324
+ "AutoProcessor": "auto_processor.VILAProcessor",
325
+ "AutoConfig": "modeling_vila.VILAConfig",
326
+ "AutoModel": "modeling_vila.VILAForCasualLM",
327
+ "AutoModelForCausalLM": "modeling_vila.VILAForCasualLM"
328
+ }
329
+ }
configuration_vila.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import math
3
+ import os
4
+ import os.path as osp
5
+ from copy import deepcopy
6
+ from threading import Thread
7
+ from typing import List, Optional
8
+
9
+ import torch
10
+ import torchvision
11
+ from PIL import Image
12
+ from transformers import (
13
+ AutoProcessor,
14
+ PretrainedConfig,
15
+ PreTrainedModel,
16
+ Qwen2Config,
17
+ Qwen2ForCausalLM,
18
+ Qwen2PreTrainedModel,
19
+ TextIteratorStreamer,
20
+ )
21
+
22
+
23
+ class VILAConfig(PretrainedConfig):
24
+ model_type = "vila"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+
27
+ def __init__(
28
+ self,
29
+ llm_cfg=None,
30
+ vision_tower_cfg=None,
31
+ mm_projector_cfg=None,
32
+ architectures=None,
33
+ resume_path=None,
34
+ hidden_size=None,
35
+ mm_hidden_size=None,
36
+ image_aspect_ratio=None,
37
+ num_video_frames=None,
38
+ fps=None,
39
+ mm_vision_select_layer=None,
40
+ mm_vision_select_feature=None,
41
+ mm_use_im_start_end=False,
42
+ mm_use_im_patch_token=False,
43
+ mm_projector_lr=None,
44
+ vision_tower_lr=None,
45
+ vision_resolution=None,
46
+ interpolate_mode=None,
47
+ s2=None,
48
+ dynamic_s2=None,
49
+ s2_scales=None,
50
+ s2_max_split_size=None,
51
+ s2_resize_output_to_scale_idx=0,
52
+ min_tiles: Optional[int] = 1,
53
+ max_tiles: Optional[int] = 12,
54
+ num_time_tokens=None,
55
+ time_token_format=None,
56
+ image_encoder: str = '{"_target_": "llava.model.encoders.BasicImageEncoder"}',
57
+ video_encoder: str = '{"_target_": "llava.model.encoders.BasicVideoEncoder"}',
58
+ **kwargs,
59
+ ):
60
+ super().__init__()
61
+ self.architectures = architectures
62
+ self.llm_cfg = llm_cfg
63
+ self.vision_tower_cfg = vision_tower_cfg
64
+ self.mm_projector_cfg = mm_projector_cfg
65
+ self.resume_path = resume_path
66
+
67
+ self.hidden_size = hidden_size
68
+ self.mm_hidden_size = mm_hidden_size
69
+ self.image_aspect_ratio = image_aspect_ratio
70
+ self.num_video_frames = num_video_frames
71
+ self.fps = fps
72
+ self.mm_vision_select_layer = mm_vision_select_layer
73
+ self.mm_vision_select_feature = mm_vision_select_feature
74
+ self.mm_use_im_start_end = mm_use_im_start_end
75
+ self.mm_use_im_patch_token = mm_use_im_patch_token
76
+ self.mm_projector_lr = mm_projector_lr
77
+ self.vision_tower_lr = vision_tower_lr
78
+ self.vision_resolution = vision_resolution
79
+ self.interpolate_mode = interpolate_mode
80
+ self.s2 = s2
81
+ self.dynamic_s2 = dynamic_s2
82
+ self.s2_scales = s2_scales
83
+ self.s2_max_split_size = s2_max_split_size
84
+ self.s2_resize_output_to_scale_idx = s2_resize_output_to_scale_idx
85
+ self.min_tiles = min_tiles
86
+ self.max_tiles = max_tiles
87
+ self.num_time_tokens = num_time_tokens
88
+ self.time_token_format = time_token_format
89
+
90
+ self.image_encoder = image_encoder
91
+ self.video_encoder = video_encoder
92
+
93
+ super().__init__(**kwargs)
constants.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
18
+ WORKER_HEART_BEAT_INTERVAL = 15
19
+
20
+ LOGDIR = "."
21
+
22
+ # Model Constants
23
+ IGNORE_INDEX = -100
24
+ DEFAULT_IMAGE_TOKEN = "<image>"
25
+
26
+ SENTINEL_TOKEN = "<vila/sentinel>"
27
+ MEDIA_TOKENS = {
28
+ "image": "<image>",
29
+ "video": "<vila/video>",
30
+ }
31
+ # <image> <vila/video> <vila/sentinel>
32
+ # TODO(ligeng): need to discuss with Zhijian for the following tokens for different models.
33
+ """
34
+ 151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
35
+ 151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
36
+ 151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
37
+ 151646: AddedToken("[BOS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
38
+ 151647: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
39
+ 151648: AddedToken("<vila/sentinel>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
40
+ 151649: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
41
+ 151650: AddedToken("<vila/video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
42
+ """
43
+ NUM_EXTRA_TOKENS = 8
conversation.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+ # This file is modified from https://github.com/haotian-liu/LLaVA/
17
+
18
+ import dataclasses
19
+ from enum import Enum, auto
20
+ from typing import List
21
+
22
+ # from llava.utils.logging import logger
23
+
24
+
25
+ class SeparatorStyle(Enum):
26
+ """Different separator style."""
27
+
28
+ AUTO = auto()
29
+ TWO = auto()
30
+ MPT = auto()
31
+ PLAIN = auto()
32
+ LLAMA_3 = auto()
33
+
34
+
35
+ @dataclasses.dataclass
36
+ class Conversation:
37
+ """A class that keeps all conversation history."""
38
+
39
+ system: str
40
+ roles: List[str]
41
+ messages: List[List[str]]
42
+ sep_style: SeparatorStyle = SeparatorStyle.AUTO
43
+ sep: str = "###"
44
+ sep2: str = None
45
+ version: str = "Unknown"
46
+
47
+ def get_prompt(self):
48
+ messages = self.messages
49
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
50
+ messages = self.messages.copy()
51
+ init_role, init_msg = messages[0].copy()
52
+ init_msg = init_msg[0].replace("<image>", "").strip()
53
+ messages[0] = (init_role, "<image>\n" + init_msg)
54
+
55
+ if self.sep_style == SeparatorStyle.TWO:
56
+ seps = [self.sep, self.sep2]
57
+ ret = self.system + seps[0]
58
+ for i, (role, message) in enumerate(messages):
59
+ if message:
60
+ if type(message) is tuple:
61
+ message, _, _ = message
62
+ ret += role + ": " + message + seps[i % 2]
63
+ else:
64
+ ret += role + ":"
65
+ elif self.sep_style == SeparatorStyle.LLAMA_3:
66
+ ret = self.system + self.sep
67
+ for rid, (role, message) in enumerate(messages):
68
+ if message:
69
+ if type(message) is tuple:
70
+ message = message[0]
71
+ sep = self.sep if rid < len(messages) - 1 else self.sep2
72
+ ret += role + message + sep
73
+ else:
74
+ ret += role
75
+ elif self.sep_style == SeparatorStyle.MPT:
76
+ ret = self.system + self.sep
77
+ for role, message in messages:
78
+ if message:
79
+ if type(message) is tuple:
80
+ message, _, _ = message
81
+ ret += role + message + self.sep
82
+ else:
83
+ ret += role
84
+ elif self.sep_style == SeparatorStyle.PLAIN:
85
+ seps = [self.sep, self.sep2]
86
+ ret = self.system
87
+ for i, (role, message) in enumerate(messages):
88
+ if message:
89
+ if type(message) is tuple:
90
+ message, _, _ = message
91
+ ret += message + seps[i % 2]
92
+ else:
93
+ ret += ""
94
+ else:
95
+ raise ValueError(f"Invalid style: {self.sep_style}")
96
+
97
+ return ret
98
+
99
+ def append_message(self, role, message):
100
+ self.messages.append([role, message])
101
+
102
+ def copy(self):
103
+ return Conversation(
104
+ system=self.system,
105
+ roles=self.roles,
106
+ messages=[[x, y] for x, y in self.messages],
107
+ sep_style=self.sep_style,
108
+ sep=self.sep,
109
+ sep2=self.sep2,
110
+ version=self.version,
111
+ )
112
+
113
+
114
+ conv_auto = Conversation(
115
+ system="",
116
+ roles=("", ""),
117
+ messages=(),
118
+ sep_style=SeparatorStyle.AUTO,
119
+ sep="\n",
120
+ )
121
+
122
+ conv_vicuna_v1 = Conversation(
123
+ system="A chat between a curious user and an artificial intelligence assistant. "
124
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
125
+ roles=("USER", "ASSISTANT"),
126
+ version="v1",
127
+ messages=(),
128
+ sep_style=SeparatorStyle.TWO,
129
+ sep=" ",
130
+ sep2="</s>",
131
+ )
132
+
133
+ conv_llava_plain = Conversation(
134
+ system="",
135
+ roles=("", ""),
136
+ messages=(),
137
+ sep_style=SeparatorStyle.PLAIN,
138
+ sep="\n",
139
+ )
140
+
141
+ hermes_2 = Conversation(
142
+ system="<|im_start|>system\nAnswer the questions.",
143
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
144
+ sep_style=SeparatorStyle.MPT,
145
+ sep="<|im_end|>",
146
+ messages=(),
147
+ version="hermes-2",
148
+ )
149
+
150
+ # Template added by Yukang. Note (kentang-mit@): sep is <|eot_id|> for official template.
151
+ llama_3_chat = Conversation(
152
+ system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. "
153
+ "You are able to understand the visual content that the user provides, "
154
+ "and assist the user with a variety of tasks using natural language.",
155
+ roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
156
+ version="llama_v3",
157
+ messages=(),
158
+ sep_style=SeparatorStyle.LLAMA_3,
159
+ sep="<|eot_id|>",
160
+ sep2="<|end_of_text|>",
161
+ )
162
+
163
+
164
+ default_conversation = conv_auto
165
+ conv_templates = {
166
+ "auto": conv_auto,
167
+ "hermes-2": hermes_2,
168
+ "llama_3": llama_3_chat,
169
+ "v1": conv_vicuna_v1,
170
+ "vicuna_v1": conv_vicuna_v1,
171
+ "plain": conv_llava_plain,
172
+ }
173
+
174
+
175
+ CONVERSATION_MODE_MAPPING = {
176
+ "vila1.5-3b": "vicuna_v1",
177
+ "vila1.5-8b": "llama_3",
178
+ "vila1.5-13b": "vicuna_v1",
179
+ "vila1.5-40b": "hermes-2",
180
+ "llama-3": "llama_3",
181
+ "llama3": "llama_3",
182
+ }
183
+
184
+
185
+ def auto_set_conversation_mode(model_name_or_path: str) -> str:
186
+ global default_conversation
187
+ for k, v in CONVERSATION_MODE_MAPPING.items():
188
+ if k in model_name_or_path.lower():
189
+ print(f"Setting conversation mode to `{v}` based on model name/path `{model_name_or_path}`.")
190
+ default_conversation = conv_templates[v]
191
+ return
llm/added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151649,
3
+ "<vila/sentinel>": 151648,
4
+ "<vila/video>": 151650,
5
+ "<|endoftext|>": 151643,
6
+ "<|im_end|>": 151645,
7
+ "<|im_start|>": 151644,
8
+ "[BOS]": 151646,
9
+ "[PAD]": 151647
10
+ }
llm/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/llm",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_max_length": 4096,
16
+ "model_type": "qwen2",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000.0,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "tokenizer_model_max_length": 4096,
26
+ "tokenizer_padding_side": "right",
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.46.0",
29
+ "use_cache": true,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151651
32
+ }
llm/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.0"
14
+ }
llm/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
llm/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556c4ebb621c5f0ef9582a24ec6ecebc371955c538e6cc36fbb9142226b8edcb
3
+ size 3086591624
llm/special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "[BOS]",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "[PAD]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
llm/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc37d325d718c91319f527fbe8258c03ac890aba2f252b85af89a625927908a
3
+ size 11419189
llm/tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "[BOS]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "[PAD]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<vila/sentinel>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<image>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<vila/video>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ }
68
+ },
69
+ "additional_special_tokens": [
70
+ "<|im_start|>",
71
+ "<|im_end|>"
72
+ ],
73
+ "bos_token": "[BOS]",
74
+ "chat_template": "{% if messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages if message['content'] is not none %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
75
+ "clean_up_tokenization_spaces": false,
76
+ "eos_token": "<|im_end|>",
77
+ "errors": "replace",
78
+ "legacy": false,
79
+ "model_max_length": 4096,
80
+ "pad_token": "[PAD]",
81
+ "padding_side": "right",
82
+ "split_special_tokens": false,
83
+ "tokenizer_class": "Qwen2Tokenizer",
84
+ "unk_token": null
85
+ }
llm/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
media.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ from collections import defaultdict
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ import cv2
7
+ import numpy as np
8
+ import PIL
9
+ import PIL.Image
10
+ import requests
11
+ from transformers import PretrainedConfig
12
+
13
+ # from llava.constants import MEDIA_TOKENS
14
+ # from llava.media import Image, Video
15
+ # from llava.utils import make_list
16
+ # from llava.utils.logging import logger
17
+
18
+ MEDIA_TOKENS = {
19
+ "image": "<image>",
20
+ "video": "<vila/video>",
21
+ }
22
+
23
+
24
+ class Media:
25
+ pass
26
+
27
+
28
+ class File(Media):
29
+ def __init__(self, path: str) -> None:
30
+ self.path = path
31
+
32
+
33
+ class Image(File):
34
+ pass
35
+
36
+
37
+ class Video(File):
38
+ pass
39
+
40
+
41
+ def make_list(obj: Any) -> List:
42
+ return obj if isinstance(obj, list) else [obj]
43
+
44
+
45
+ def _extract_image(image: Union[Image, PIL.Image.Image]) -> PIL.Image.Image:
46
+ if isinstance(image, Image):
47
+ if image.path.startswith("http://") or image.path.startswith("https://"):
48
+ image = PIL.Image.open(requests.get(image.path, stream=True).raw)
49
+ else:
50
+ image = PIL.Image.open(image.path)
51
+ return image
52
+
53
+
54
+ def _load_video(video_path: str, *, num_frames: int) -> List[PIL.Image.Image]:
55
+ # Load video frames from a directory
56
+ if os.path.isdir(video_path):
57
+ frame_paths = sorted(glob.glob(os.path.join(video_path, "*")))
58
+ indices = np.round(np.linspace(0, len(frame_paths) - 1, num_frames)).astype(int)
59
+ return [PIL.Image.open(frame_paths[index]) for index in indices]
60
+
61
+ # Load video frames from a video file
62
+ vidcap = cv2.VideoCapture(video_path)
63
+
64
+ # Find the last frame as frame count might not be accurate
65
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
66
+ while frame_count > 0:
67
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
68
+ if vidcap.grab():
69
+ break
70
+ frame_count -= 1
71
+ else:
72
+ raise ValueError(f"Video '{video_path}' has no frames.")
73
+
74
+ # Extract frames uniformly
75
+ indices = np.round(np.linspace(0, frame_count - 1, num_frames)).astype(int)
76
+ frames = {}
77
+ for index in indices:
78
+ if index in frames:
79
+ continue
80
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, index)
81
+ success, frame = vidcap.read()
82
+ if not success:
83
+ print(f"Failed to read frame {index} from video '{video_path}'. Skipped.")
84
+ continue
85
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
86
+ frames[index] = PIL.Image.fromarray(frame)
87
+ return [frames[index] for index in indices if index in frames]
88
+
89
+
90
+ def _extract_video(video: Video, config: PretrainedConfig) -> List[PIL.Image.Image]:
91
+ num_frames = config.num_video_frames
92
+ if getattr(config, "fps") != 0:
93
+ print("Extracting frames from video with specified FPS is not supported yet. Ignored.")
94
+
95
+ frames = _load_video(video.path, num_frames=num_frames)
96
+ return frames
97
+
98
+
99
+ def extract_media(
100
+ messages: List[Dict[str, Any]],
101
+ config: Optional[PretrainedConfig] = None,
102
+ draft: bool = False,
103
+ ) -> Dict[str, List[Any]]:
104
+ media = defaultdict(list)
105
+ for message in messages:
106
+ text = ""
107
+ for part in make_list(message["value"]):
108
+ if isinstance(part, str):
109
+ for token in MEDIA_TOKENS.values():
110
+ if token in part:
111
+ print(f"Media token '{token}' found in text: '{part}'. Removed.")
112
+ part = part.replace(token, "").strip()
113
+ text += part
114
+ elif isinstance(part, (Image, PIL.Image.Image)):
115
+ if draft:
116
+ media["image"].append(part)
117
+ else:
118
+ media["image"].append(_extract_image(part))
119
+ text += MEDIA_TOKENS["image"]
120
+ elif isinstance(part, Video):
121
+ if draft:
122
+ media["video"].append(part)
123
+ else:
124
+ media["video"].append(_extract_video(part, config))
125
+ text += MEDIA_TOKENS["video"]
126
+ else:
127
+ raise ValueError(f"Unsupported prompt part type: {type(part)}")
128
+ message["value"] = text
129
+ return media
media_encoder.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+
8
+ class BaseEncoder(nn.Module):
9
+ def __init__(self, parent: nn.Module) -> None:
10
+ super().__init__()
11
+ self._parent = [parent]
12
+
13
+ @property
14
+ def parent(self) -> nn.Module:
15
+ return self._parent[0]
16
+
17
+
18
+ class BasicImageEncoder(BaseEncoder):
19
+ def __init__(
20
+ self,
21
+ parent: torch.nn.Module,
22
+ start_tokens: Optional[str] = None,
23
+ end_tokens: Optional[str] = "\n",
24
+ ) -> None:
25
+ super().__init__(parent)
26
+ self.start_tokens = start_tokens
27
+ self.end_tokens = end_tokens
28
+
29
+ def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
30
+ if tokens is None:
31
+ return None
32
+ token_ids = self.parent.tokenizer(tokens).input_ids
33
+ token_ids = torch.tensor(token_ids, device=self.parent.device)
34
+ return self.parent.llm.model.embed_tokens(token_ids)
35
+
36
+ def _process_features(
37
+ self,
38
+ features: torch.Tensor,
39
+ start_token_embeds: Optional[torch.Tensor],
40
+ end_token_embeds: Optional[torch.Tensor],
41
+ ) -> torch.Tensor:
42
+ if start_token_embeds is not None:
43
+ features = torch.cat([start_token_embeds, features], dim=0)
44
+ if end_token_embeds is not None:
45
+ features = torch.cat([features, end_token_embeds], dim=0)
46
+ return features
47
+
48
+ def forward(self, images: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
49
+ images = torch.stack(images, dim=0)
50
+ features = self.parent.encode_images(images, block_sizes=config.get("block_sizes"))
51
+ process_features = partial(
52
+ self._process_features,
53
+ start_token_embeds=self.embed_tokens(self.start_tokens),
54
+ end_token_embeds=self.embed_tokens(self.end_tokens),
55
+ )
56
+ return [process_features(f) for f in features]
57
+
58
+
59
+ class BasicVideoEncoder(BaseEncoder):
60
+ def __init__(
61
+ self,
62
+ parent: torch.nn.Module,
63
+ start_tokens: Optional[str] = None,
64
+ end_tokens: Optional[str] = "\n",
65
+ ) -> None:
66
+ super().__init__(parent)
67
+ self.start_tokens = start_tokens
68
+ self.end_tokens = end_tokens
69
+
70
+ def embed_tokens(self, tokens: Optional[str]) -> Optional[torch.Tensor]:
71
+ if tokens is None:
72
+ return None
73
+ token_ids = self.parent.tokenizer(tokens).input_ids
74
+ token_ids = torch.tensor(token_ids, device=self.parent.device)
75
+ return self.parent.llm.model.embed_tokens(token_ids)
76
+
77
+ def _process_features(
78
+ self,
79
+ features: torch.Tensor,
80
+ start_token_embeds: Optional[torch.Tensor],
81
+ end_token_embeds: Optional[torch.Tensor],
82
+ ) -> torch.Tensor:
83
+ if start_token_embeds is not None:
84
+ start_embeds = torch.stack([start_token_embeds] * features.shape[0], dim=0)
85
+ features = torch.cat([start_embeds, features], dim=1)
86
+ if end_token_embeds is not None:
87
+ end_embeds = torch.stack([end_token_embeds] * features.shape[0], dim=0)
88
+ features = torch.cat([features, end_embeds], dim=1)
89
+ return features.flatten(0, 1)
90
+
91
+ def forward(self, videos: List[torch.Tensor], config: Dict[str, Any]) -> List[torch.Tensor]:
92
+ num_frames = [video.shape[0] for video in videos]
93
+ images = torch.cat(videos, dim=0)
94
+ features = self.parent.encode_images(images)
95
+ features = torch.split(features, num_frames)
96
+ process_features = partial(
97
+ self._process_features,
98
+ start_token_embeds=self.embed_tokens(self.start_tokens),
99
+ end_token_embeds=self.embed_tokens(self.end_tokens),
100
+ )
101
+ return [process_features(f) for f in features]
mm_projector/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/mm_projector",
3
+ "architectures": [
4
+ "MultimodalProjector"
5
+ ],
6
+ "mm_projector_type": "mlp_downsample_3x3_fix",
7
+ "model_type": "v2l_projector",
8
+ "torch_dtype": "bfloat16",
9
+ "transformers_version": "4.46.0"
10
+ }
mm_projector/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2bcf0973a1ee1f2d7f178f12801df6feb48630837b2707c96a82144805e6e9e
3
+ size 87068272
mm_utils.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ # dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
18
+
19
+ import base64
20
+ import os
21
+ import tempfile
22
+ from io import BytesIO
23
+
24
+ import numpy as np
25
+ import torch
26
+ from PIL import Image
27
+ from transformers import StoppingCriteria
28
+
29
+ from .constants import DEFAULT_IMAGE_TOKEN
30
+
31
+
32
+ def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
33
+ import cv2
34
+
35
+ if fps == None or frame_count == None:
36
+ # if one of fps or frame_count is None, still recompute
37
+ fps = vidcap.get(cv2.CAP_PROP_FPS)
38
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
39
+ if fps == 0 or frame_count == 0:
40
+ print(f"Video file not found. return empty images. {video_file_name}")
41
+ return [
42
+ Image.new("RGB", (720, 720)),
43
+ ] * num_frames, 0
44
+
45
+ duration = frame_count / fps
46
+ frame_interval = frame_count // num_frames
47
+ if frame_interval == 0 and frame_count <= 1:
48
+ print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
49
+ return [
50
+ Image.new("RGB", (720, 720)),
51
+ ] * num_frames, 0
52
+ # print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
53
+
54
+ images = []
55
+ count = 0
56
+ success = True
57
+ frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
58
+ while success:
59
+ # print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
60
+ if frame_count >= num_frames:
61
+ success, frame = vidcap.read()
62
+ if count in frame_indices:
63
+ try:
64
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
65
+ im_pil = Image.fromarray(img)
66
+ images.append(im_pil)
67
+ except BaseException:
68
+ continue
69
+ if len(images) >= num_frames:
70
+ return images, num_frames
71
+ count += 1
72
+ else:
73
+ # Left padding frames if the video is not long enough
74
+ success, frame = vidcap.read()
75
+ if success:
76
+ try:
77
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
78
+ im_pil = Image.fromarray(img)
79
+ images.append(im_pil)
80
+ except BaseException:
81
+ continue
82
+ count += 1
83
+ else:
84
+ break
85
+ if len(images) == 0:
86
+ raise ValueError("Did not find enough frames in the video. return empty image.")
87
+
88
+ return images, len(images)
89
+
90
+
91
+ def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
92
+ """
93
+ num_frames is the max number of frames the model can support.
94
+ frame_count is the number of frames in the input video.
95
+ max_fps is the max FPS of the model can support.
96
+ fps is the fps of the input video.
97
+ """
98
+
99
+ import random
100
+
101
+ import cv2
102
+
103
+ if fps == None or frame_count == None:
104
+ # if one of fps or frame_count is None, still recompute
105
+ fps = vidcap.get(cv2.CAP_PROP_FPS)
106
+ frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
107
+
108
+ if fps == 0 or frame_count == 0:
109
+ print(f"Video file not found. return empty images. {video_file_name}")
110
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
111
+ return [
112
+ Image.new("RGB", (720, 720)),
113
+ ] * empty_video_frames, 0
114
+
115
+ duration = frame_count / fps
116
+ # print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
117
+ # If the video is too long (longer than max_fps and num_frames can support),
118
+ # we will use lower fps to sample frames.
119
+ if duration >= num_frames / max_fps:
120
+ frame_interval = frame_count // num_frames
121
+
122
+ # If the video is too short, we will skip the video if there is only one frame.
123
+ if frame_interval == 0 and frame_count <= 1:
124
+ print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
125
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
126
+ return [
127
+ Image.new("RGB", (720, 720)),
128
+ ] * empty_video_frames, 0
129
+
130
+ images = []
131
+ count = 0
132
+ success = True
133
+ frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
134
+
135
+ while success:
136
+ if frame_count >= num_frames:
137
+ # success, frame = vidcap.read()
138
+ if count in frame_indices:
139
+ success, frame = vidcap.read()
140
+ try:
141
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
142
+ im_pil = Image.fromarray(img)
143
+ images.append(im_pil)
144
+ except:
145
+ # print("Failed to read frame:", count)
146
+ continue
147
+ if len(images) >= num_frames:
148
+ return images, num_frames
149
+ else:
150
+ success = vidcap.grab()
151
+ count += 1
152
+ else:
153
+ # Left padding frames if the video is not long enough
154
+ success, frame = vidcap.read()
155
+ if success:
156
+ try:
157
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
158
+ im_pil = Image.fromarray(img)
159
+ images.append(im_pil)
160
+ except:
161
+ # print("Failed to read frame:", count)
162
+ continue
163
+ count += 1
164
+ else:
165
+ break
166
+ else:
167
+ frames_required = int(duration * max_fps)
168
+ frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
169
+ if frames_required == 0:
170
+ print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
171
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
172
+ return [
173
+ Image.new("RGB", (720, 720)),
174
+ ] * empty_video_frames, 0
175
+ elif frames_required == 1:
176
+ frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
177
+ images = []
178
+ count = 0
179
+ looked = 0
180
+ success = True
181
+
182
+ while success:
183
+ success, frame = vidcap.read()
184
+ if success and (looked in frame_indices):
185
+ try:
186
+ img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
187
+ im_pil = Image.fromarray(img)
188
+ images.append(im_pil)
189
+ except:
190
+ continue
191
+ count += 1
192
+ looked += 1
193
+
194
+ if len(images) == 0:
195
+ empty_video_frames = int(random.uniform(2, 8 * max_fps))
196
+ return [
197
+ Image.new("RGB", (720, 720)),
198
+ ] * empty_video_frames, 0
199
+ else:
200
+ return images, len(images)
201
+
202
+
203
+ def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
204
+ """
205
+ Extract frames from a video using OpenCV.
206
+
207
+ Args:
208
+ vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
209
+ frames (int): Number of frames to extract from the video.
210
+ fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
211
+
212
+ Returns:
213
+ list: List of PIL Images extracted from the video.
214
+
215
+ Raises:
216
+ NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
217
+ """
218
+ import cv2
219
+
220
+ if isinstance(vpath_or_bytesio, str):
221
+ vidcap = cv2.VideoCapture(vpath_or_bytesio)
222
+ if max_fps > 0.0:
223
+ return get_frame_from_vcap_with_fps(
224
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
225
+ )
226
+ return get_frame_from_vcap(
227
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
228
+ )
229
+ elif isinstance(vpath_or_bytesio, (BytesIO,)):
230
+ # assuming mp4
231
+ with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
232
+ temp_video.write(vpath_or_bytesio.read())
233
+ temp_video_name = temp_video.name
234
+ vidcap = cv2.VideoCapture(temp_video_name)
235
+ if max_fps > 0.0:
236
+ return get_frame_from_vcap_with_fps(
237
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
238
+ )
239
+ return get_frame_from_vcap(
240
+ vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
241
+ )
242
+ else:
243
+ raise NotImplementedError(type(vpath_or_bytesio))
244
+
245
+
246
+ def load_image_from_base64(image):
247
+ return Image.open(BytesIO(base64.b64decode(image)))
248
+
249
+
250
+ def expand2square(pil_img, background_color):
251
+ """
252
+ Expand the given PIL image to a square shape by adding padding.
253
+
254
+ Parameters:
255
+ - pil_img: The PIL image to be expanded.
256
+ - background_color: The color of the padding to be added.
257
+
258
+ Returns:
259
+ - The expanded PIL image.
260
+
261
+ If the image is already square, it is returned as is.
262
+ If the image is wider than it is tall, padding is added to the top and bottom.
263
+ If the image is taller than it is wide, padding is added to the left and right.
264
+ """
265
+ width, height = pil_img.size
266
+ if pil_img.mode == "L":
267
+ background_color = background_color[0]
268
+ if width == height:
269
+ return pil_img
270
+ elif width > height:
271
+ result = Image.new(pil_img.mode, (width, width), background_color)
272
+ result.paste(pil_img, (0, (width - height) // 2))
273
+ return result
274
+ else:
275
+ result = Image.new(pil_img.mode, (height, height), background_color)
276
+ result.paste(pil_img, ((height - width) // 2, 0))
277
+ return result
278
+
279
+
280
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
281
+ best_ratio_diff = float("inf")
282
+ best_ratio = (1, 1)
283
+ area = width * height
284
+ for ratio in target_ratios:
285
+ target_aspect_ratio = ratio[0] / ratio[1]
286
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
287
+ if ratio_diff < best_ratio_diff:
288
+ best_ratio_diff = ratio_diff
289
+ best_ratio = ratio
290
+ elif ratio_diff == best_ratio_diff:
291
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
292
+ best_ratio = ratio
293
+ return best_ratio
294
+
295
+
296
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
297
+ orig_width, orig_height = image.size
298
+ aspect_ratio = orig_width / orig_height
299
+
300
+ # calculate the existing image aspect ratio
301
+ target_ratios = {
302
+ (i, j)
303
+ for n in range(min_num, max_num + 1)
304
+ for i in range(1, n + 1)
305
+ for j in range(1, n + 1)
306
+ if i * j <= max_num and i * j >= min_num
307
+ }
308
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
309
+
310
+ # find the closest aspect ratio to the target
311
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
312
+
313
+ # calculate the target width and height
314
+ target_width = image_size * target_aspect_ratio[0]
315
+ target_height = image_size * target_aspect_ratio[1]
316
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
317
+
318
+ # resize the image
319
+ resized_img = image.resize((target_width, target_height))
320
+ processed_images = []
321
+ for i in range(blocks):
322
+ box = (
323
+ (i % (target_width // image_size)) * image_size,
324
+ (i // (target_width // image_size)) * image_size,
325
+ ((i % (target_width // image_size)) + 1) * image_size,
326
+ ((i // (target_width // image_size)) + 1) * image_size,
327
+ )
328
+ # split the image
329
+ split_img = resized_img.crop(box)
330
+ processed_images.append(split_img)
331
+ assert len(processed_images) == blocks
332
+ if use_thumbnail and len(processed_images) != 1:
333
+ thumbnail_img = image.resize((image_size, image_size))
334
+ processed_images.append(thumbnail_img)
335
+ return processed_images
336
+
337
+
338
+ def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
339
+ orig_width, orig_height = image.size
340
+ aspect_ratio = orig_width / orig_height
341
+ min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
342
+
343
+ processed_images = []
344
+
345
+ ##########################################################################################
346
+ ############# Add tiles for all but the last scale using fixed squre ratio ###############
347
+ ##########################################################################################
348
+
349
+ for scale in s2_scales[:-1]:
350
+ target_width = image_size * (scale // s2_scales[0])
351
+ target_height = image_size * (scale // s2_scales[0])
352
+ blocks = (scale // s2_scales[0]) ** 2
353
+
354
+ # resize the image
355
+ resized_img = image.resize((target_width, target_height))
356
+ for i in range(blocks):
357
+ box = (
358
+ (i % (target_width // image_size)) * image_size,
359
+ (i // (target_width // image_size)) * image_size,
360
+ ((i % (target_width // image_size)) + 1) * image_size,
361
+ ((i // (target_width // image_size)) + 1) * image_size,
362
+ )
363
+ # split the image
364
+ split_img = resized_img.crop(box)
365
+ processed_images.append(split_img)
366
+
367
+ ##########################################################################################
368
+ ################ Add tiles for the last scale using dynamic aspect ratio #################
369
+ ##########################################################################################
370
+
371
+ # calculate the existing image aspect ratio
372
+ target_ratios = {
373
+ (i, j)
374
+ for n in range(min_num, max_num + 1)
375
+ for i in range(1, n + 1)
376
+ for j in range(1, n + 1)
377
+ if i * j <= max_num and i * j >= min_num
378
+ }
379
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
380
+
381
+ # find the closest aspect ratio to the target
382
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
383
+
384
+ # calculate the target width and height
385
+ target_width = image_size * target_aspect_ratio[0]
386
+ target_height = image_size * target_aspect_ratio[1]
387
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
388
+
389
+ # resize the image
390
+ resized_img = image.resize((target_width, target_height))
391
+ for i in range(blocks):
392
+ box = (
393
+ (i % (target_width // image_size)) * image_size,
394
+ (i // (target_width // image_size)) * image_size,
395
+ ((i % (target_width // image_size)) + 1) * image_size,
396
+ ((i // (target_width // image_size)) + 1) * image_size,
397
+ )
398
+ # split the image
399
+ split_img = resized_img.crop(box)
400
+ processed_images.append(split_img)
401
+
402
+ return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
403
+
404
+
405
+ def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None):
406
+ prompt = prompt.split(DEFAULT_IMAGE_TOKEN)
407
+ idx = 0
408
+ all_images = []
409
+ for img in images:
410
+ processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles)
411
+ all_images.append(processed_images)
412
+ prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0])
413
+ idx += 2
414
+ prompt = "".join(prompt)
415
+ if all_images:
416
+ all_images = torch.cat(all_images)
417
+ else:
418
+ all_images = None
419
+ prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "")
420
+ return all_images, prompt
421
+
422
+
423
+ def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None):
424
+ idx = 0
425
+ all_images = []
426
+ all_block_size = []
427
+ for img in images:
428
+ processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
429
+ all_images.append(processed_images)
430
+ all_block_size.append(block_size)
431
+ idx += 2
432
+ if all_images:
433
+ all_images = torch.cat(all_images)
434
+ else:
435
+ all_images = None
436
+ return all_images, all_block_size
437
+
438
+
439
+ def process_image(
440
+ image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
441
+ ):
442
+ processor = data_args.image_processor
443
+ if isinstance(image_file, str):
444
+ if image_folder is not None:
445
+ image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
446
+ else:
447
+ image = Image.open(image_file).convert("RGB")
448
+ else:
449
+ # image is stored in bytearray
450
+ image = image_file
451
+ image = image.convert("RGB")
452
+ if hasattr(data_args.image_processor, "crop_size"):
453
+ # CLIP vision tower
454
+ crop_size = data_args.image_processor.crop_size
455
+ else:
456
+ # SIGLIP vision tower
457
+ assert hasattr(data_args.image_processor, "size")
458
+ crop_size = data_args.image_processor.size
459
+ if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
460
+ assert crop_size["height"] == crop_size["width"]
461
+ images, block_size = dynamic_s2_preprocess(
462
+ image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
463
+ )
464
+ images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
465
+ return torch.stack(images), block_size
466
+ if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
467
+ assert crop_size["height"] == crop_size["width"]
468
+ if max_tiles is not None:
469
+ max_num = max_tiles
470
+ else:
471
+ max_num = data_args.max_tiles
472
+ images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
473
+ images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
474
+ return torch.stack(images)
475
+
476
+ if data_args.image_aspect_ratio == "resize":
477
+ image = image.resize((crop_size["width"], crop_size["height"]))
478
+ if data_args.image_aspect_ratio == "pad":
479
+
480
+ def expand2square(pil_img, background_color):
481
+ width, height = pil_img.size
482
+ if width == height:
483
+ return pil_img
484
+ elif width > height:
485
+ result = Image.new(pil_img.mode, (width, width), background_color)
486
+ result.paste(pil_img, (0, (width - height) // 2))
487
+ return result
488
+ else:
489
+ result = Image.new(pil_img.mode, (height, height), background_color)
490
+ result.paste(pil_img, ((height - width) // 2, 0))
491
+ return result
492
+
493
+ image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
494
+ image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
495
+ else:
496
+ # Using default behavior of the vision encoder
497
+ # For CLIP, default is central crop
498
+ # For Radio, default is central crop
499
+ # For Siglip, default is resize
500
+ # For InternVIT, default is resize
501
+ image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
502
+ return image
503
+
504
+
505
+ def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
506
+ model_cfg.image_processor = image_processor
507
+ new_images = [
508
+ process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
509
+ for image in images
510
+ ]
511
+
512
+ if all(x.shape == new_images[0].shape for x in new_images):
513
+ if len(new_images[0].shape) == 4:
514
+ new_images = torch.cat(new_images, dim=0)
515
+ elif len(new_images[0].shape) == 3:
516
+ new_images = torch.stack(new_images, dim=0)
517
+ else:
518
+ raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
519
+ else:
520
+ raise ValueError("The shape of images in new_images is different!")
521
+ return new_images
522
+
523
+
524
+ def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
525
+ return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
526
+
527
+
528
+ def is_gemma_tokenizer(tokenizer):
529
+ return "gemma" in tokenizer.__class__.__name__.lower()
530
+
531
+
532
+ def get_model_name_from_path(model_path):
533
+ model_path = model_path.strip("/")
534
+ model_paths = model_path.split("/")
535
+ if model_paths[-1].startswith("checkpoint-"):
536
+ return model_paths[-2] + "_" + model_paths[-1]
537
+ else:
538
+ return model_paths[-1]
539
+
540
+
541
+ class KeywordsStoppingCriteria(StoppingCriteria):
542
+ def __init__(self, keywords, tokenizer, input_ids):
543
+ self.keywords = keywords
544
+ self.keyword_ids = []
545
+ self.max_keyword_len = 0
546
+ for keyword in keywords:
547
+ cur_keyword_ids = tokenizer(keyword).input_ids
548
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
549
+ cur_keyword_ids = cur_keyword_ids[1:]
550
+ if len(cur_keyword_ids) > self.max_keyword_len:
551
+ self.max_keyword_len = len(cur_keyword_ids)
552
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
553
+ self.tokenizer = tokenizer
554
+ self.start_len = input_ids.shape[1]
555
+
556
+ def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
557
+ offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
558
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
559
+ for keyword_id in self.keyword_ids:
560
+ if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
561
+ return True
562
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
563
+ for keyword in self.keywords:
564
+ if keyword in outputs:
565
+ return True
566
+ return False
567
+
568
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
569
+ outputs = []
570
+ for i in range(output_ids.shape[0]):
571
+ outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
572
+ return all(outputs)
modeling_vila.py ADDED
@@ -0,0 +1,1156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import json
3
+ import logging
4
+ import math
5
+ import os
6
+ import os.path
7
+ import os.path as osp
8
+ import shutil
9
+ import warnings
10
+ from abc import ABC
11
+ from collections import OrderedDict, defaultdict, deque
12
+ from copy import deepcopy
13
+ from itertools import chain
14
+ from threading import Thread
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.distributed as dist
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ import torchvision
22
+ from einops import rearrange
23
+ from PIL import Image
24
+ from transformers import (
25
+ AutoConfig,
26
+ AutoModel,
27
+ AutoProcessor,
28
+ AutoTokenizer,
29
+ GenerationConfig,
30
+ LogitsProcessor,
31
+ PretrainedConfig,
32
+ PreTrainedModel,
33
+ Qwen2Config,
34
+ Qwen2ForCausalLM,
35
+ Qwen2PreTrainedModel,
36
+ TextIteratorStreamer,
37
+ )
38
+ from transformers.modeling_outputs import CausalLMOutputWithPast
39
+ from transformers.modeling_utils import ContextManagers, no_init_weights
40
+
41
+ from .auto_processor import VILAProcessor
42
+ from .base_projector import MultimodalProjector, MultimodalProjectorConfig
43
+ from .builder import build_llm_and_tokenizer
44
+ from .configuration_vila import VILAConfig
45
+ from .constants import *
46
+ from .conversation import SeparatorStyle, default_conversation
47
+ from .media import extract_media
48
+ from .media_encoder import BasicImageEncoder, BasicVideoEncoder
49
+ from .mm_utils import process_image, process_images
50
+ from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
51
+ from .tokenizer_utils import tokenize_conversation
52
+ from .utils import get_model_config, load_tokenizer_then_handle_media_tokens_and_chat_template
53
+
54
+
55
+ # from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
56
+ # quick hack for remote code
57
+ def get_pg_manager():
58
+ return None
59
+
60
+
61
+ def get_model_weights_dtype(model: nn.Module):
62
+ pass
63
+
64
+
65
+ def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
66
+ if model_type_or_path is None:
67
+ return None
68
+ ## load from pretrained model
69
+ if config.resume_path:
70
+ assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
71
+ return MultimodalProjector.from_pretrained(model_type_or_path, config)
72
+ ## build from scratch
73
+ else:
74
+ mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
75
+ mm_projector = MultimodalProjector(mm_projector_cfg, config)
76
+ return mm_projector
77
+
78
+
79
+ def check_dot_in_model_path(model_path: str):
80
+ """Check if the model path contains dot, which will affect the remote code loading."""
81
+ if osp.isdir(model_path): # local model
82
+ if "." in osp.abspath(model_path):
83
+ return True
84
+ else: # remote model
85
+ if "." in model_path:
86
+ return True
87
+ return False
88
+
89
+
90
+ def get_vila_version(model_path: str) -> str:
91
+ VERSIONS = ["vila1.5", "vila-u", "longvila", "nvila", "vila-m3"]
92
+ for version in VERSIONS:
93
+ if version in model_path.lower():
94
+ return version
95
+ return None
96
+
97
+
98
+ def generate_jinja_template(conv_mode: str) -> str:
99
+ if conv_mode == "vicuna_v1":
100
+ return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." %}
101
+ {% set roles = ["USER", "ASSISTANT"] %}
102
+ {% set sep = " " %}
103
+ {% set sep2 = "</s>" %}
104
+
105
+ {{ system_prompt }}
106
+
107
+ {% for message in messages %}
108
+ {% if message['role'] == roles[0] %}
109
+ {{ roles[0] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
110
+ {% else %}
111
+ {{ roles[1] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
112
+ {% endif %}
113
+ {% endfor %}"""
114
+ elif conv_mode == "llama_3":
115
+ return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." %}
116
+ {% set roles = ["<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"] %}
117
+ {% set sep = "<|eot_id|>" %}
118
+ {% set sep2 = "<|end_of_text|>" %}
119
+
120
+ {{ system_prompt }}
121
+
122
+ {% for message in messages %}
123
+ {% if message['role'] == 'user' %}
124
+ {{ roles[0] }}{{ message['content'] }}{{ sep }}
125
+ {% else %}
126
+ {{ roles[1] }}{{ message['content'] }}{{ sep }}
127
+ {% endif %}
128
+ {% endfor %}
129
+
130
+ {{ sep2 }}"""
131
+ elif conv_mode == "hermes_2":
132
+ return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
133
+ {% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
134
+ {% set sep = "<|im_end|>" %}
135
+
136
+ {{ system_prompt }}{{ sep }}
137
+
138
+ {% for message in messages %}
139
+ {% if message['role'] == 'user' %}
140
+ {{ roles[0] }}{{ message['content'] }}{{ sep }}
141
+ {% else %}
142
+ {{ roles[1] }}{{ message['content'] }}{{ sep }}
143
+ {% endif %}
144
+ {% endfor %}"""
145
+ else:
146
+ raise NotImplementedError(f"Jinja template generation is not implemented for {conv_mode}.")
147
+
148
+
149
+ def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
150
+ ## skip vision tower instantiation
151
+ if model_name_or_path is None:
152
+ return None
153
+
154
+ vision_tower_arch = None
155
+ if config.resume_path and "radio" not in model_name_or_path:
156
+ assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
157
+ vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
158
+ vision_tower_arch = vision_tower_cfg.architectures[0].lower()
159
+ vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path
160
+
161
+ use_s2 = getattr(config, "s2", False)
162
+ use_dynamic_s2 = getattr(config, "dynamic_s2", False)
163
+
164
+ if "siglip" in vision_tower_name:
165
+ if use_dynamic_s2:
166
+ vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
167
+ elif use_s2:
168
+ vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
169
+ else:
170
+ vision_tower = SiglipVisionTower(model_name_or_path, config)
171
+ else:
172
+ raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")
173
+
174
+ config.mm_hidden_size = (
175
+ vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
176
+ )
177
+ return vision_tower
178
+
179
+
180
+ class VILAPretrainedModel(PreTrainedModel):
181
+ config_class = VILAConfig
182
+ main_input_name = "input_embeds"
183
+ supports_gradient_checkpointing = True
184
+ _supports_flash_attn_2 = True
185
+
186
+ def __init__(self, config: VILAConfig, *args, **kwargs):
187
+ super().__init__(config)
188
+ self.config = config
189
+ cfgs = get_model_config(config)
190
+ if len(cfgs) == 3:
191
+ llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
192
+ else:
193
+ raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")
194
+
195
+ # loading on cpu by default
196
+ device_map = kwargs.get("device_map", "cpu")
197
+ self.mm_projector = build_mm_projector(mm_projector_cfg, config)
198
+ self.vision_tower = build_vision_tower(vision_tower_cfg, config)
199
+ if "auto" in device_map or "cuda" in device_map:
200
+ self.mm_projector = self.mm_projector.cuda()
201
+ self.vision_tower = self.vision_tower.cuda()
202
+ # set device_map auto can autoamtically shard llm to different devices
203
+ self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
204
+
205
+ self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)}
206
+
207
+ self.post_config()
208
+ self.is_loaded = True
209
+
210
+ assert (
211
+ self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
212
+ ), "At least one of the components must be instantiated."
213
+
214
+ @classmethod
215
+ def convert_vila_dev_ckpt_to_remote(
216
+ self,
217
+ model_path: str,
218
+ output_dir: str = None,
219
+ vila_version: str | None = None,
220
+ conv_mode: str | None = None,
221
+ copy: bool = True,
222
+ *model_args,
223
+ **kwargs,
224
+ ):
225
+ # assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
226
+ from huggingface_hub import HfApi, snapshot_download
227
+
228
+ if os.path.isdir(model_path):
229
+ model_path = model_path
230
+ else:
231
+ api = HfApi()
232
+ model_path = snapshot_download(model_path, local_dir=output_dir)
233
+ print("downloading HF model to", model_path)
234
+
235
+ if check_dot_in_model_path(model_path) and output_dir is None:
236
+ raise ValueError(
237
+ f"Model path {model_path} contains a dot, which will affect the remote code loading. Please specify the output directory without dot in the path to fix this issue."
238
+ )
239
+ if output_dir is not None and "." in output_dir:
240
+ raise ValueError(
241
+ f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots."
242
+ )
243
+ if vila_version is None:
244
+ vila_version = get_vila_version(model_path)
245
+
246
+ cfg_path = os.path.join(model_path, "config.json")
247
+ config = json.load(open(cfg_path))
248
+ config["version"] = "2.0" # nvila tag
249
+ config["architectures"] = ["VILAForCasualLM"]
250
+ config["auto_map"] = {
251
+ "AutoProcessor": "auto_processor.VILAProcessor",
252
+ "AutoConfig": "modeling_vila.VILAConfig",
253
+ "AutoModel": "modeling_vila.VILAForCasualLM",
254
+ "AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
255
+ }
256
+ config["model_type"] = "vila"
257
+ if vila_version in ["vila1.5", "vila-m3"]:
258
+ if conv_mode is None:
259
+ raise ValueError(f"Please specify the conversation mode for {model_path}.")
260
+ config["chat_template"] = conv_mode
261
+ jinja_template = generate_jinja_template(conv_mode)
262
+ jinja_path = os.path.join(model_path, f"{conv_mode}.jinja")
263
+ with open(jinja_path, "w") as f:
264
+ f.write(jinja_template)
265
+ json.dump(config, open(cfg_path, "w"), indent=2)
266
+ self.copy_remote_py_files(model_path, copy=copy)
267
+
268
+ ##########################################################################################
269
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
270
+ tokenizer = load_tokenizer_then_handle_media_tokens_and_chat_template(model_path, config)
271
+ tokenizer.save_pretrained(osp.join(output_dir, "llm"))
272
+ ##########################################################################################
273
+
274
+ @classmethod
275
+ def copy_remote_py_files(cls, output_dir, copy=True):
276
+ ## copy .py and REAMDE for next loading remote code
277
+ current_file_path = os.path.abspath(__file__)
278
+ current_folder = os.path.dirname(current_file_path)
279
+ for file_name in os.listdir(current_folder):
280
+ if file_name == "INSTRUCTIONS.md":
281
+ src_fname = os.path.join(current_folder, file_name)
282
+ dst_fname = os.path.join(output_dir, "README.md")
283
+ if os.path.exists(dst_fname):
284
+ old_reamde = open(dst_fname).read()
285
+ else:
286
+ old_reamde = ""
287
+ with open(src_fname) as src, open(dst_fname, "w") as dst:
288
+ dst.write(src.read())
289
+ dst.write(old_reamde)
290
+ print("[HF remote code] REAMDE ", src_fname, "to", dst_fname)
291
+ if file_name.endswith(".py") or file_name.endswith(".jinja"):
292
+ full_file_name = os.path.join(current_folder, file_name)
293
+ if os.path.isfile(full_file_name):
294
+ if copy:
295
+ shutil.copy(full_file_name, output_dir)
296
+ print("[HF remote code] copying", full_file_name, "to", output_dir)
297
+ else:
298
+ # symlink to ease development
299
+ if os.path.exists(os.path.join(output_dir, file_name)):
300
+ os.remove(os.path.join(output_dir, file_name))
301
+ os.symlink(full_file_name, os.path.join(output_dir, file_name))
302
+ print("[HF remote code] linking", full_file_name, "to", output_dir)
303
+
304
+ def save_pretrained(self, output_dir, state_dict=None):
305
+ if state_dict is None:
306
+ # other wise fetch from deepspeed
307
+ # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
308
+ state_dict = self.state_dict()
309
+
310
+ if getattr(self, "tokenizer", None):
311
+ self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
312
+
313
+ if self.get_llm():
314
+ print(f"saving llm to {osp.join(output_dir, 'llm')}")
315
+ self.llm.config._name_or_path = osp.join(output_dir, "llm")
316
+ llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
317
+ self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
318
+ self.config.llm_cfg = self.llm.config
319
+
320
+ if self.get_vision_tower():
321
+ print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
322
+ self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
323
+ vision_tower_state_dict = OrderedDict(
324
+ {k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
325
+ )
326
+ self.vision_tower.vision_tower.save_pretrained(
327
+ os.path.join(output_dir, "vision_tower"),
328
+ state_dict=vision_tower_state_dict,
329
+ )
330
+ self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
331
+ self.config.vision_tower_cfg = self.vision_tower.config
332
+ if hasattr(self.config.vision_tower_cfg, "auto_map"):
333
+ if "radio" not in self.get_vision_tower().__class__.__name__.lower():
334
+ delattr(self.config.vision_tower_cfg, "auto_map")
335
+
336
+ if self.get_mm_projector():
337
+ print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
338
+ self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
339
+ mm_projector_state_dict = OrderedDict(
340
+ {k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
341
+ )
342
+ self.mm_projector.save_pretrained(
343
+ os.path.join(output_dir, "mm_projector"),
344
+ state_dict=mm_projector_state_dict,
345
+ )
346
+ self.config.mm_projector_cfg = self.mm_projector.config
347
+
348
+ ## update and save top-level config
349
+ self.config._name_or_path = output_dir
350
+ self.config.architectures = [self.__class__.__name__]
351
+ self.config.save_pretrained(output_dir)
352
+
353
+ ## copy .py and REAMDE for next loading remote code
354
+ self.copy_remote_py_files(output_dir)
355
+
356
+ @classmethod
357
+ def from_pretrained(
358
+ cls,
359
+ pretrained_model_name_or_path: Optional[str] = None,
360
+ *model_args,
361
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
362
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
363
+ ignore_mismatched_sizes: bool = False,
364
+ force_download: bool = False,
365
+ local_files_only: bool = False,
366
+ token: Optional[Union[str, bool]] = None,
367
+ revision: str = "main",
368
+ use_safetensors: Optional[bool] = None,
369
+ weights_only: bool = True,
370
+ **kwargs,
371
+ ):
372
+ config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
373
+ return cls._from_config(config, **kwargs)
374
+
375
+ def init_llm(self, llm_config, config, *args, **kwargs):
376
+ self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
377
+ # hard coded for NVILA
378
+ # variables for XGrammar
379
+ # print("DEBUG", len(self.tokenizer.added_tokens_encoder.keys()), self.tokenizer.added_tokens_encoder.keys())
380
+ NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys())
381
+
382
+ # TODO: SENTINEL_TOKEN is not added, need to check with Zhijian
383
+ self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
384
+ # XGrammar tokenizer and grammar compiler
385
+ # lazy init only when specified json output during inference
386
+ self.grammar_compiler = None
387
+ self.llm.resize_token_embeddings(len(self.tokenizer))
388
+ return self.llm, self.tokenizer
389
+
390
+ def post_config(self):
391
+ ######################################################################
392
+ # TODO: need to check dtype with jason
393
+ self.llm = self.llm.to(torch.float16)
394
+ self.mm_projector = self.mm_projector.to(torch.float16)
395
+ self.vision_tower = self.vision_tower.to(torch.float16)
396
+ ######################################################################
397
+ self.training = self.llm.training
398
+ ## configuration
399
+ if getattr(self.config, "llm_cfg", None) is None:
400
+ self.config.llm_cfg = self.llm.config
401
+ if getattr(self.config, "vision_tower_cfg", None) is None:
402
+ self.config.vision_tower_cfg = self.vision_tower.config
403
+ if getattr(self.config, "mm_projector_cfg", None) is None:
404
+ self.config.mm_projector_cfg = self.mm_projector.config
405
+
406
+ def get_llm(self):
407
+ llm = getattr(self, "llm", None)
408
+ if type(llm) is list:
409
+ llm = llm[0]
410
+ return llm
411
+
412
+ def get_lm_head(self):
413
+ lm_head = getattr(self.get_llm(), "lm_head", None)
414
+ return lm_head
415
+
416
+ def get_vision_tower(self):
417
+ vision_tower = getattr(self, "vision_tower", None)
418
+ if type(vision_tower) is list:
419
+ vision_tower = vision_tower[0]
420
+ return vision_tower
421
+
422
+ def get_mm_projector(self):
423
+ mm_projector = getattr(self, "mm_projector", None)
424
+ if type(mm_projector) is list:
425
+ mm_projector = mm_projector[0]
426
+ return mm_projector
427
+
428
+ def freezed_module_patch(self):
429
+ """
430
+ Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
431
+ """
432
+ if self.training:
433
+ if self.get_llm() and not getattr(self.config, "tune_language_model", False):
434
+ pass
435
+ # logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
436
+ if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
437
+ self.get_vision_tower().eval()
438
+ if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
439
+ self.get_mm_projector().eval()
440
+
441
+
442
+ class VILAForCasualLM(VILAPretrainedModel):
443
+ def __init__(self, config: VILAConfig, *args, **kwargs):
444
+ super().__init__(config, *args, **kwargs)
445
+
446
+ def merge_features_for_dynamic_s2(self, image_features, block_sizes):
447
+ scales = self.get_vision_tower().scales
448
+ resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx
449
+
450
+ image_features_each_image = []
451
+ new_block_sizes = []
452
+ block_cnt = 0
453
+ for block_size_each_image in block_sizes:
454
+ if block_size_each_image is None:
455
+ cur_features = image_features[block_cnt : block_cnt + 1]
456
+ cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
457
+ cur_features = cur_features.repeat(1, len(scales), 1, 1)
458
+ image_features_each_image.append(cur_features)
459
+ new_block_sizes.append((1, 1))
460
+ block_cnt += 1
461
+ else:
462
+ cur_features_each_scale = []
463
+ for scale in scales[:-1]:
464
+ num_blocks_this_scale = (scale // scales[0]) ** 2
465
+ cur_features_each_scale.append(
466
+ self.merge_chessboard(
467
+ image_features[block_cnt : block_cnt + num_blocks_this_scale],
468
+ num_split_h=scale // scales[0],
469
+ num_split_w=scale // scales[0],
470
+ )
471
+ ) # 1 * C * H * W
472
+ block_cnt += num_blocks_this_scale
473
+ num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
474
+ cur_features_each_scale.append(
475
+ self.merge_chessboard(
476
+ image_features[block_cnt : block_cnt + num_blocks_last_scale],
477
+ num_split_h=block_size_each_image[0],
478
+ num_split_w=block_size_each_image[1],
479
+ )
480
+ ) # 1 * C * H * W
481
+ block_cnt += num_blocks_last_scale
482
+
483
+ # resize and concat features from different scales
484
+ output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
485
+ cur_features = torch.cat(
486
+ [
487
+ F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
488
+ cur_features_each_scale[i].dtype
489
+ )
490
+ for i in range(len(cur_features_each_scale))
491
+ ],
492
+ dim=1,
493
+ )
494
+ # cur_features = rearrange(cur_features, "1 c h w -> (h w) c")
495
+
496
+ image_features_each_image.append(cur_features)
497
+
498
+ if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
499
+ new_block_sizes.append(block_size_each_image)
500
+ else:
501
+ new_block_sizes.append(
502
+ (
503
+ scales[resize_output_to_scale_idx] // scales[0],
504
+ scales[resize_output_to_scale_idx] // scales[0],
505
+ )
506
+ )
507
+
508
+ assert block_cnt == len(image_features)
509
+
510
+ return image_features_each_image, new_block_sizes
511
+
512
+ def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None):
513
+ if block_sizes is None:
514
+ block_sizes = [None] * len(images)
515
+ if getattr(self.config, "dynamic_s2", False):
516
+ image_features = self.get_vision_tower()(images)
517
+ image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
518
+
519
+ image_features = [
520
+ self.split_chessboard(x, block_size[0], block_size[1])
521
+ for x, block_size in zip(image_features, new_block_sizes)
522
+ ] # list of B * C * H * W tensors
523
+ image_features = torch.cat(
524
+ [rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
525
+ ) # B * N * C
526
+ image_features = self.get_mm_projector()(image_features)
527
+ image_features = list(
528
+ image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
529
+ )
530
+ image_features = [
531
+ self.merge_chessboard(x, block_size[0], block_size[1])
532
+ for x, block_size in zip(image_features, new_block_sizes)
533
+ ] # list of 1 * C * H * W tensors
534
+ image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
535
+ if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
536
+ image_features = torch.stack(image_features, dim=0)
537
+ else:
538
+ image_features = self.get_vision_tower()(images)
539
+ image_features = self.get_mm_projector()(image_features)
540
+ return image_features
541
+
542
+ def _embed(
543
+ self,
544
+ input_ids: torch.Tensor,
545
+ media: Dict[str, List[torch.Tensor]],
546
+ media_config: Dict[str, Dict[str, Any]],
547
+ labels: Optional[torch.Tensor],
548
+ attention_mask: Optional[torch.Tensor],
549
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
550
+ labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
551
+ attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
552
+
553
+ # PROCESS_GROUP_MANAGER = get_pg_manager()
554
+ PROCESS_GROUP_MANAGER = None
555
+ if PROCESS_GROUP_MANAGER is not None:
556
+ for name in media:
557
+ self.encoders[name].end_tokens = None
558
+
559
+ # Extract text and media embeddings
560
+ text_embeds = self.llm.model.embed_tokens(input_ids)
561
+ media_embeds = self.__embed_media_tokens(media, media_config)
562
+
563
+ # This is a workaround to make sure the dummy embeddings are consumed
564
+ while media_embeds.get("dummy"):
565
+ dummy_embed = media_embeds["dummy"].popleft()
566
+ text_embeds += torch.sum(dummy_embed) * 0
567
+
568
+ # Remove padding
569
+ batch_size = labels.shape[0]
570
+ text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
571
+ labels = [labels[k][attention_mask[k]] for k in range(batch_size)]
572
+
573
+ # Build inverse mapping from token ID to media name
574
+ media_tokens = {}
575
+ for name, token_id in self.tokenizer.media_token_ids.items():
576
+ media_tokens[token_id] = name
577
+
578
+ # Fuse text and media embeddings
579
+ inputs_m, labels_m = [], []
580
+ for k in range(batch_size):
581
+ inputs_mk, labels_mk = [], []
582
+ pos = 0
583
+ while pos < len(labels[k]):
584
+ if input_ids[k][pos].item() in media_tokens:
585
+ end = pos + 1
586
+ name = media_tokens[input_ids[k][pos].item()]
587
+ input = media_embeds[name].popleft()
588
+ label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
589
+ else:
590
+ end = pos
591
+ while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
592
+ end += 1
593
+ input = text_embeds[k][pos:end]
594
+ label = labels[k][pos:end]
595
+ inputs_mk.append(input)
596
+ labels_mk.append(label)
597
+ pos = end
598
+ inputs_m.append(torch.cat(inputs_mk, dim=0))
599
+ labels_m.append(torch.cat(labels_mk, dim=0))
600
+ inputs, labels = inputs_m, labels_m
601
+
602
+ # Check if all media embeddings are consumed
603
+ for name in media_embeds:
604
+ if media_embeds[name]:
605
+ raise ValueError(f"Not all {name} embeddings are consumed!")
606
+
607
+ # Truncate sequences to `model_max_length` as media embeddings are inserted
608
+ inputs, labels = self.__truncate_sequence(inputs, labels)
609
+
610
+ # Pad sequences to the longest one in the batch
611
+ return self.__batchify_sequence(inputs, labels)
612
+
613
+ def __embed_media_tokens(
614
+ self,
615
+ media: Dict[str, List[torch.Tensor]],
616
+ media_config: Dict[str, Dict[str, Any]],
617
+ ) -> Dict[str, List[torch.Tensor]]:
618
+ embeds = defaultdict(deque)
619
+ for name in media:
620
+ if self.training:
621
+ # Gather metainfo of media objects from all ranks
622
+ info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
623
+ infos = list(chain(*distributed.all_gather(info)))
624
+
625
+ # The entire batch does not contain any media objects of this type.
626
+ if not infos:
627
+ continue
628
+
629
+ # Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
630
+ if media.get(name) is None or len(media[name]) == 0:
631
+ dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
632
+ embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
633
+ continue
634
+ embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
635
+ return embeds
636
+
637
+ def __truncate_sequence(
638
+ self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
639
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
640
+ if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
641
+ warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
642
+ inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
643
+ labels = [label[: self.tokenizer.model_max_length] for label in labels]
644
+ return inputs, labels
645
+
646
+ def __batchify_sequence(
647
+ self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
648
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
649
+ batch_size = len(inputs)
650
+ device = inputs[0].device
651
+ hidden_size = inputs[0].shape[1]
652
+ max_length = max(inputs[k].shape[0] for k in range(batch_size))
653
+ attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)
654
+
655
+ inputs_p, labels_p = [], []
656
+ for k in range(batch_size):
657
+ size_pk = max_length - inputs[k].shape[0]
658
+ inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
659
+ labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
660
+ if self.tokenizer.padding_side == "right":
661
+ attention_mask[k, inputs[k].shape[0] :] = False
662
+ inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
663
+ labels_pk = torch.cat([labels[k], labels_pk], dim=0)
664
+ else:
665
+ attention_mask[k, : -inputs[k].shape[0]] = False
666
+ inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
667
+ labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
668
+ inputs_p.append(inputs_pk)
669
+ labels_p.append(labels_pk)
670
+
671
+ inputs = torch.stack(inputs_p, dim=0)
672
+ labels = torch.stack(labels_p, dim=0)
673
+ return inputs, labels, attention_mask
674
+
675
+ def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
676
+ # Handle sequence parallelism
677
+ PROCESS_GROUP_MANAGER = get_pg_manager()
678
+
679
+ # We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
680
+ if PROCESS_GROUP_MANAGER is not None:
681
+ sp_degree = PROCESS_GROUP_MANAGER.sp_degree
682
+ sp_rank = PROCESS_GROUP_MANAGER.sp_rank
683
+ sp_group = PROCESS_GROUP_MANAGER.sp_pg
684
+ ring_degree = PROCESS_GROUP_MANAGER.ring_degree
685
+ ring_rank = PROCESS_GROUP_MANAGER.ring_rank
686
+ ring_type = PROCESS_GROUP_MANAGER.ring_type
687
+ ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
688
+ ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank
689
+
690
+ bs, shard_seqlen = position_ids.shape
691
+ sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
692
+ dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
693
+ sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)
694
+
695
+ if sp_rank == 0:
696
+ original_start_id = 0
697
+ else:
698
+ original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
699
+ original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()
700
+
701
+ # Gather attention_mask, position_ids, labels and input_embeds
702
+ all_inputs_embeds = torch.zeros(
703
+ bs,
704
+ torch.sum(sp_seq_len_cat),
705
+ inputs_embeds.shape[-1],
706
+ dtype=inputs_embeds.dtype,
707
+ device=inputs_embeds.device,
708
+ ).contiguous()
709
+ all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
710
+ dist.barrier(group=sp_group)
711
+ dist.all_reduce(all_inputs_embeds, group=sp_group)
712
+ dist.barrier(group=sp_group)
713
+
714
+ attention_mask_list = [
715
+ torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
716
+ for i in range(sp_degree)
717
+ ]
718
+ position_ids_list = [
719
+ torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
720
+ for i in range(sp_degree)
721
+ ]
722
+ labels_list = [
723
+ torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
724
+ ]
725
+
726
+ dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
727
+ dist.all_gather(position_ids_list, position_ids, group=sp_group)
728
+ dist.all_gather(labels_list, labels, group=sp_group)
729
+
730
+ effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
731
+ effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
732
+ effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
733
+
734
+ global_attention_mask_list = []
735
+ global_position_ids_list = []
736
+ global_labels_list = []
737
+ global_inputs_embeds_list = []
738
+ for i in range(bs):
739
+ global_attention_mask_batch_list = []
740
+ global_position_ids_batch_list = []
741
+ global_labels_batch_list = []
742
+ global_inputs_embeds_batch_list = []
743
+ for j in range(sp_degree):
744
+ eff_len = effective_seqlen_batch_list[i][j]
745
+ prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0
746
+
747
+ global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
748
+ global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
749
+ global_labels_batch_list.append(labels_list[j][i, :eff_len])
750
+ global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
751
+ global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
752
+ global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
753
+ global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
754
+ global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
755
+
756
+ global_attention_mask = torch.nn.utils.rnn.pad_sequence(
757
+ global_attention_mask_list, batch_first=True, padding_value=False
758
+ )
759
+ global_position_ids = torch.nn.utils.rnn.pad_sequence(
760
+ global_position_ids_list, batch_first=True, padding_value=-1
761
+ )
762
+ global_labels = torch.nn.utils.rnn.pad_sequence(
763
+ global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
764
+ )
765
+ global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
766
+ global_inputs_embeds_list, batch_first=True, padding_value=0
767
+ )
768
+
769
+ # Re-shard the inputs
770
+ if ring_degree > 1:
771
+ total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
772
+ new_seqlen_per_rank = total_effective_seqlen // sp_degree
773
+ assert torch.all(
774
+ total_effective_seqlen % sp_degree == 0
775
+ ), "total_effective_seqlen must be divisible by sp_degree"
776
+
777
+ max_new_seqlen = torch.max(new_seqlen_per_rank).item()
778
+
779
+ new_attention_mask = torch.zeros(
780
+ (bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
781
+ )
782
+ new_position_ids = torch.zeros(
783
+ (bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
784
+ )
785
+ new_labels = torch.full(
786
+ (bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
787
+ )
788
+ new_inputs_embeds = torch.zeros(
789
+ (bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
790
+ dtype=global_inputs_embeds.dtype,
791
+ device=global_inputs_embeds.device,
792
+ )
793
+
794
+ if ring_type == "ring_varlen":
795
+ for i in range(bs):
796
+ start_idx = new_seqlen_per_rank[i] * sp_rank
797
+ end_idx = start_idx + new_seqlen_per_rank[i]
798
+ new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
799
+ new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
800
+ new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
801
+ new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
802
+ i, start_idx:end_idx, :
803
+ ]
804
+ elif ring_type == "zigzag_ring_varlen":
805
+ chunk_size = total_effective_seqlen // (2 * sp_degree)
806
+ for i in range(bs):
807
+ # Zigzag pattern indices
808
+ if sp_degree == ring_degree:
809
+ forward_rank_idx = sp_rank
810
+ backward_rank_idx = 2 * sp_degree - sp_rank - 1
811
+ else:
812
+ ulysses_offset = ulysses_rank * ring_degree * 2
813
+ forward_rank_idx = ring_rank + ulysses_offset
814
+ backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset
815
+
816
+ # Calculate start and end indices for the forward and backward zigzag
817
+ start_idx_fwd = forward_rank_idx * chunk_size[i]
818
+ end_idx_fwd = start_idx_fwd + chunk_size[i]
819
+
820
+ start_idx_bwd = backward_rank_idx * chunk_size[i]
821
+ end_idx_bwd = start_idx_bwd + chunk_size[i]
822
+
823
+ # Fill new tensors with zigzag data
824
+ new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
825
+ new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
826
+ i, start_idx_bwd:end_idx_bwd
827
+ ]
828
+
829
+ new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
830
+ new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
831
+ i, start_idx_bwd:end_idx_bwd
832
+ ]
833
+
834
+ new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
835
+ new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]
836
+
837
+ new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
838
+ new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
839
+ i, start_idx_bwd:end_idx_bwd, :
840
+ ]
841
+ else:
842
+ raise ValueError(f"Invalid ring_type: {ring_type}")
843
+ else:
844
+ global_seq_len = global_attention_mask.shape[-1]
845
+ seq_len_sharded = global_seq_len // sp_degree
846
+ start_idx_reshard = seq_len_sharded * sp_rank
847
+ end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len
848
+
849
+ new_attention_mask = torch.narrow(
850
+ global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
851
+ )
852
+ new_position_ids = torch.narrow(
853
+ global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
854
+ )
855
+ new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
856
+ new_inputs_embeds = torch.narrow(
857
+ global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
858
+ )
859
+
860
+ return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
861
+
862
+ device = inputs_embeds.device
863
+ batch_size = inputs_embeds.shape[0]
864
+ seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]
865
+
866
+ # Pack all sequences together
867
+ inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
868
+ attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
869
+ position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
870
+ labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]
871
+
872
+ # Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
873
+ inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
874
+ attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
875
+ position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
876
+ labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))
877
+
878
+ # Mask the first token of each sequence to avoid contamination
879
+ for label in labels_p:
880
+ label[0] = IGNORE_INDEX
881
+
882
+ # Batch the data
883
+ inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
884
+ attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
885
+ position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
886
+ labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)
887
+
888
+ if hasattr(
889
+ self, "pad_to_multiple_of"
890
+ ): # related to quantization, please refer to ModelArguments for more information.
891
+ assert len(labels_p.shape) == 2
892
+ batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
893
+ hidden_size = inputs_embeds_p.shape[-1]
894
+
895
+ if max_length % self.pad_to_multiple_of != 0:
896
+ max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
897
+ difference = max_length - cur_length
898
+
899
+ inputs_embeds_p = torch.cat(
900
+ (
901
+ inputs_embeds_p,
902
+ torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
903
+ ),
904
+ dim=1,
905
+ )
906
+ labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
907
+ attention_mask_p = torch.cat(
908
+ (
909
+ attention_mask_p,
910
+ torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
911
+ ),
912
+ dim=1,
913
+ )
914
+ position_ids_p = torch.cat(
915
+ (position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
916
+ )
917
+
918
+ return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p
919
+
920
+ def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]:
921
+ raise NotImplementedError("This method is not implemented for VILA model.")
922
+ # Convert response format to logits processor
923
+ import xgrammar as xgr
924
+
925
+ logging.info("[XGrammar] Compiling grammar for contrained output")
926
+
927
+ if self.grammar_compiler is None:
928
+ # logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
929
+ self.grammar_compiler = xgr.GrammarCompiler(
930
+ xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
931
+ )
932
+
933
+ if response_format.type == "json_schema":
934
+ compiled_grammar = self.grammar_compiler.compile_json_schema(
935
+ response_format.json_schema.schema_,
936
+ indent=2,
937
+ )
938
+ else:
939
+ compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()
940
+
941
+ return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]
942
+
943
+ def forward(
944
+ self,
945
+ input_ids: torch.LongTensor = None,
946
+ media: Optional[Dict[str, List[torch.Tensor]]] = None,
947
+ images: Optional[torch.FloatTensor] = None,
948
+ media_config: Optional[List] = None,
949
+ attention_mask: Optional[torch.Tensor] = None,
950
+ position_ids: Optional[torch.LongTensor] = None,
951
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
952
+ inputs_embeds: Optional[torch.FloatTensor] = None,
953
+ labels: Optional[torch.LongTensor] = None,
954
+ packing: bool = True,
955
+ force_packing: bool = False,
956
+ seqlens_in_batch: Optional[torch.LongTensor] = None,
957
+ dpo_forward: bool = False,
958
+ **kwargs,
959
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
960
+ self.freezed_module_patch()
961
+
962
+ if images is not None:
963
+ if media is not None:
964
+ raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
965
+ print("The 'images' argument is deprecated. Please use 'media' instead.")
966
+ media = {"image": images}
967
+
968
+ if media_config is None:
969
+ media_config = defaultdict(dict)
970
+
971
+ if inputs_embeds is None:
972
+ inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)
973
+
974
+ if force_packing or (packing and self.training and not dpo_forward):
975
+ if seqlens_in_batch is None:
976
+ seqlens_in_batch = torch.sum(attention_mask, dim=1)
977
+ set_seqlens_in_batch(seqlens_in_batch)
978
+
979
+ (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
980
+ inputs_embeds, attention_mask, position_ids, labels
981
+ )
982
+
983
+ outputs = self.llm(
984
+ inputs_embeds=inputs_embeds,
985
+ attention_mask=attention_mask,
986
+ position_ids=position_ids,
987
+ past_key_values=past_key_values,
988
+ labels=labels,
989
+ **kwargs,
990
+ )
991
+
992
+ if self.training and getattr(self.config, "time_token_ids", []):
993
+ outputs.loss = soft_cross_entropy(
994
+ outputs.logits,
995
+ labels,
996
+ soft_tokens=self.config.time_token_ids,
997
+ std=self.config.soft_ce_std,
998
+ )
999
+
1000
+ if dpo_forward:
1001
+ return outputs.logits, labels
1002
+
1003
+ return outputs
1004
+
1005
+ @torch.inference_mode()
1006
+ def generate(
1007
+ self,
1008
+ input_ids: Optional[torch.FloatTensor] = None,
1009
+ media: Optional[Dict[str, List[torch.Tensor]]] = None,
1010
+ media_config: Dict[str, Dict[str, Any]] = None,
1011
+ attention_mask: Optional[torch.LongTensor] = None,
1012
+ do_sample: bool = True,
1013
+ **generation_kwargs,
1014
+ ):
1015
+ inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
1016
+ return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict_in_generate=True, output_scores=True, do_sample=do_sample, **generation_kwargs)
1017
+
1018
+ @torch.inference_mode()
1019
+ def generate_content(
1020
+ self,
1021
+ prompt: Union[str, List],
1022
+ generation_config: Optional[GenerationConfig] = None,
1023
+ response_format=None,
1024
+ do_sample=True,
1025
+ ) -> str:
1026
+ # TODO(zhijianl): Support directly taking conversation as input
1027
+ conversation = [{"from": "human", "value": prompt}]
1028
+
1029
+ # Convert response format to logits processor
1030
+ if response_format:
1031
+ xgr_logits_processor = self.get_xgr_logits_processor(response_format)
1032
+ else:
1033
+ xgr_logits_processor = None
1034
+
1035
+ # Extract media from the conversation
1036
+
1037
+ # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
1038
+ media = extract_media(conversation, self.config)
1039
+
1040
+ # Process media
1041
+ media_config = defaultdict(dict)
1042
+ for name in media:
1043
+ if name == "image":
1044
+ if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
1045
+ self.config.image_processor = self.vision_tower.image_processor
1046
+ if self.config.image_aspect_ratio == "dynamic":
1047
+ images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
1048
+ conversation[0]["value"] = conversation[0]["value"].replace(
1049
+ DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
1050
+ )
1051
+ else:
1052
+ if type(self.config.s2_scales) is str:
1053
+ self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
1054
+ images, block_sizes = process_image(
1055
+ media["image"][0], self.config, None, enable_dynamic_s2=True
1056
+ )
1057
+ images = images.half()
1058
+ media_config[name]["block_sizes"] = [block_sizes]
1059
+ else:
1060
+ images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
1061
+ media[name] = [image for image in images]
1062
+ elif name == "video":
1063
+ if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
1064
+ media[name] = [
1065
+ process_images(
1066
+ images,
1067
+ self.vision_tower.image_processor,
1068
+ self.config,
1069
+ enable_dynamic_res=True,
1070
+ max_tiles=self.config.video_max_tiles,
1071
+ ).half()
1072
+ for images in media[name]
1073
+ ]
1074
+ elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
1075
+ self.config.image_processor = self.vision_tower.image_processor
1076
+ if type(self.config.s2_scales) is str:
1077
+ self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
1078
+ media[name] = [
1079
+ torch.cat(
1080
+ [
1081
+ process_image(
1082
+ image,
1083
+ self.config,
1084
+ None,
1085
+ enable_dynamic_s2=True,
1086
+ max_tiles=self.config.video_max_tiles,
1087
+ )[0].half()
1088
+ for image in images
1089
+ ]
1090
+ )
1091
+ for images in media[name]
1092
+ ]
1093
+ else:
1094
+ media[name] = [
1095
+ process_images(images, self.vision_tower.image_processor, self.config).half()
1096
+ for images in media[name]
1097
+ ]
1098
+ else:
1099
+ raise ValueError(f"Unsupported media type: {name}")
1100
+
1101
+ # Tokenize the conversation
1102
+ input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
1103
+
1104
+ # Set up the generation config
1105
+ generation_config = generation_config or self.default_generation_config
1106
+
1107
+ # print("input_ids", input_ids.shape)
1108
+ # print(input_ids)
1109
+ # print(self.tokenizer.batch_decode(input_ids))
1110
+ # print("media", {k: len(v) for k, v in media.items()})
1111
+ # print("media_config", media_config)
1112
+ # print("generation_config", generation_config)
1113
+ # input("wait for debug")
1114
+ # Generate the response
1115
+ try:
1116
+ outputs = self.generate(
1117
+ input_ids=input_ids,
1118
+ media=media,
1119
+ media_config=media_config,
1120
+ generation_config=generation_config,
1121
+ logits_processor=xgr_logits_processor, # structured generation
1122
+ do_sample=do_sample,
1123
+ )
1124
+ except ValueError:
1125
+ if not generation_config.do_sample:
1126
+ raise
1127
+ # FIXME(zhijianl): This is a temporary workaround for the sampling issue
1128
+ logging.warning("Generation failed with sampling, retrying with greedy decoding.")
1129
+ generation_config.do_sample = False
1130
+ outputs = self.generate(
1131
+ input_ids=input_ids,
1132
+ media=media,
1133
+ media_config=media_config,
1134
+ generation_config=generation_config,
1135
+ logits_processor=xgr_logits_processor,
1136
+ do_sample=do_sample,
1137
+ )
1138
+ output_ids = outputs.sequences
1139
+ # Decode the response
1140
+ response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
1141
+ return response, outputs.scores
1142
+
1143
+ @property
1144
+ def default_generation_config(self) -> GenerationConfig:
1145
+ generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
1146
+ if self.tokenizer.eos_token_id is None:
1147
+ raise ValueError("Tokenizer must have an EOS token")
1148
+ if generation_config.max_length == GenerationConfig().max_length:
1149
+ generation_config.max_length = self.tokenizer.model_max_length
1150
+ if generation_config.pad_token_id is None:
1151
+ generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
1152
+ if generation_config.bos_token_id is None:
1153
+ generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
1154
+ if generation_config.eos_token_id is None:
1155
+ generation_config.eos_token_id = self.tokenizer.eos_token_id
1156
+ return generation_config
siglip_encoder.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+ from accelerate.hooks import add_hook_to_module
21
+ from einops import rearrange
22
+ from s2wrapper import forward as multiscale_forward
23
+ from transformers import AutoConfig, PretrainedConfig, PreTrainedModel, SiglipImageProcessor
24
+ from transformers.image_processing_utils import BaseImageProcessor
25
+ from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
26
+ from transformers.models.siglip import SiglipVisionModel
27
+
28
+
29
+ class VisionTower(nn.Module):
30
+ def __init__(self, vision_tower, args, delay_load=False):
31
+ super().__init__()
32
+
33
+ self.is_loaded = False
34
+
35
+ self.vision_tower_name = vision_tower
36
+ self.select_layer = getattr(args, "mm_vision_select_layer", -2)
37
+ self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
38
+
39
+ self.cfg_only = None
40
+
41
+ def feature_select(self, image_forward_outs):
42
+ image_features = image_forward_outs.hidden_states[self.select_layer]
43
+ if self.select_feature == "patch":
44
+ image_features = image_features[:, 1:]
45
+ elif self.select_feature == "cls_patch":
46
+ image_features = image_features
47
+ else:
48
+ raise ValueError(f"Unexpected select feature: {self.select_feature}")
49
+ return image_features
50
+
51
+ def _maybe_resize_pos_embeds(
52
+ self,
53
+ model: PreTrainedModel,
54
+ image_processor: BaseImageProcessor,
55
+ resolution: int = -1,
56
+ interpolate_mode: str = "linear",
57
+ ):
58
+ if resolution in [model.config.image_size, -1]:
59
+ return
60
+ print(
61
+ f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
62
+ )
63
+ embeddings = model.vision_model.embeddings
64
+ patch_size = embeddings.patch_size
65
+ num_new_tokens = int((resolution // patch_size) ** 2)
66
+
67
+ old_embeddings = embeddings.position_embedding
68
+ match interpolate_mode:
69
+ case "linear":
70
+ ## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
71
+ ## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
72
+ import torch
73
+ import torch.nn as nn
74
+
75
+ if is_deepspeed_zero3_enabled():
76
+ try:
77
+ import deepspeed
78
+ except ImportError:
79
+ raise ImportError("DeepSpeed is not installed. Please install it with `pip install deepspeed`.")
80
+ with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None):
81
+ old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
82
+ else:
83
+ old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
84
+ new_embeddings = nn.Embedding(
85
+ num_new_tokens,
86
+ old_embedding_dim,
87
+ dtype=old_embeddings.weight.dtype,
88
+ device=old_embeddings.weight.device,
89
+ )
90
+ mapped_indices = (
91
+ torch.arange(num_new_tokens).to(old_embeddings.weight.device)
92
+ / (num_new_tokens - 1)
93
+ * (old_num_tokens - 1)
94
+ )
95
+ floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1)
96
+ ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1)
97
+ if is_deepspeed_zero3_enabled():
98
+ params = [old_embeddings.weight, new_embeddings.weight]
99
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
100
+ interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
101
+ ceil_indices, :
102
+ ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
103
+ else:
104
+ interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
105
+ ceil_indices, :
106
+ ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
107
+ new_embeddings.weight.data = interpolated_embeds
108
+ case _:
109
+ raise NotImplementedError
110
+
111
+ if hasattr(old_embeddings, "_hf_hook"):
112
+ hook = old_embeddings._hf_hook
113
+ add_hook_to_module(new_embeddings, hook)
114
+ new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
115
+ ## update vision encoder's configurations
116
+ model.config.image_size = resolution
117
+ if hasattr(image_processor, "crop_size"):
118
+ # CLIP vision tower
119
+ image_processor.crop_size = resolution
120
+ else:
121
+ # SIGLIP vision tower
122
+ assert hasattr(image_processor, "size")
123
+ image_processor.size = {"height": resolution, "width": resolution}
124
+ ## TODO define a '_reinitialize' method for VisionTower
125
+ embeddings.position_embedding = new_embeddings
126
+ embeddings.image_size = resolution
127
+ embeddings.num_patches = embeddings.num_positions = num_new_tokens
128
+ embeddings.position_ids = (
129
+ torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device)
130
+ )
131
+
132
+ def forward(self, images):
133
+ if type(images) is list:
134
+ image_features = []
135
+ for image in images:
136
+ image_forward_out = self.vision_tower(
137
+ image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
138
+ output_hidden_states=True,
139
+ )
140
+ image_feature = self.feature_select(image_forward_out).to(image.dtype)
141
+ image_features.append(image_feature)
142
+ else:
143
+ image_forward_outs = self.vision_tower(
144
+ images.to(device=self.device, dtype=self.dtype),
145
+ output_hidden_states=True,
146
+ )
147
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
148
+
149
+ return image_features
150
+
151
+ @property
152
+ def dummy_feature(self):
153
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
154
+
155
+ @property
156
+ def dtype(self):
157
+ return self.vision_tower.dtype
158
+
159
+ @property
160
+ def device(self):
161
+ return self.vision_tower.device
162
+
163
+ @property
164
+ def config(self):
165
+ if self.is_loaded:
166
+ return self.vision_tower.config
167
+ else:
168
+ return self.cfg_only
169
+
170
+ @property
171
+ def hidden_size(self):
172
+ return self.config.hidden_size
173
+
174
+ @property
175
+ def num_patches(self):
176
+ return (self.config.image_size // self.config.patch_size) ** 2
177
+
178
+
179
+ class VisionTowerS2(VisionTower):
180
+ def __init__(self, vision_tower, args, delay_load=False):
181
+ super().__init__(vision_tower, args, delay_load)
182
+
183
+ self.scales = list(map(int, args.s2_scales.split(",")))
184
+ self.scales.sort()
185
+ self.max_split_size = args.s2_max_split_size
186
+ self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
187
+
188
+ def forward_feature(self, images):
189
+ image_forward_outs = self.vision_tower(
190
+ images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
191
+ )
192
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
193
+ return image_features
194
+
195
+ def forward(self, images):
196
+ if type(images) is list:
197
+ image_feature = []
198
+ for image in images:
199
+ image_feature = multiscale_forward(
200
+ self.forward_feature,
201
+ image.unsqueeze(0),
202
+ img_sizes=self.scales,
203
+ max_split_size=self.max_split_size,
204
+ resize_output_to_idx=self.resize_output_to_scale_idx,
205
+ )
206
+ image_features.append(image_feature)
207
+ else:
208
+ image_features = multiscale_forward(
209
+ self.forward_feature,
210
+ images,
211
+ img_sizes=self.scales,
212
+ max_split_size=self.max_split_size,
213
+ resize_output_to_idx=self.resize_output_to_scale_idx,
214
+ )
215
+
216
+ return image_features
217
+
218
+ @property
219
+ def hidden_size(self):
220
+ return self.config.hidden_size * len(self.scales)
221
+
222
+
223
+ class VisionTowerDynamicS2(VisionTower):
224
+ def __init__(self, vision_tower, args, delay_load=False):
225
+ super().__init__(vision_tower, args, delay_load)
226
+
227
+ self.scales = list(map(int, args.s2_scales.split(",")))
228
+ self.scales.sort()
229
+ self.max_split_size = args.s2_max_split_size
230
+ self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
231
+
232
+ def forward_feature(self, images):
233
+ image_forward_outs = self.vision_tower(
234
+ images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
235
+ )
236
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
237
+ return image_features
238
+
239
+ def forward(self, images):
240
+ assert type(images) is not list
241
+ image_features = self.forward_feature(images)
242
+
243
+ return image_features
244
+
245
+ @property
246
+ def hidden_size(self):
247
+ return self.config.hidden_size * len(self.scales)
248
+
249
+
250
+ class SiglipVisionTower(VisionTower):
251
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
252
+ super().__init__(model_name_or_path, config)
253
+ # TODO(ligengl): why pass config here leading to errors?
254
+ self.vision_tower = SiglipVisionModel.from_pretrained(
255
+ model_name_or_path,
256
+ attn_implementation=config._attn_implementation,
257
+ torch_dtype=eval(config.model_dtype),
258
+ )
259
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
260
+ self.is_loaded = True
261
+
262
+
263
+ class SiglipVisionTowerS2(VisionTowerS2):
264
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
265
+ super().__init__(model_name_or_path, config)
266
+ self.vision_tower = SiglipVisionModel.from_pretrained(
267
+ model_name_or_path,
268
+ attn_implementation=config._attn_implementation,
269
+ torch_dtype=eval(config.model_dtype),
270
+ )
271
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
272
+ # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
273
+ self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1]
274
+ self.is_loaded = True
275
+
276
+
277
+ class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2):
278
+ def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
279
+ super().__init__(model_name_or_path, config)
280
+ self.vision_tower = SiglipVisionModel.from_pretrained(
281
+ model_name_or_path,
282
+ attn_implementation="flash_attention_2",
283
+ torch_dtype=eval(config.model_dtype),
284
+ )
285
+ self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
286
+ # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
287
+ self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0]
288
+ self.is_loaded = True
tokenizer_utils.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+
17
+ from typing import Any, Dict, List, Optional, Sequence
18
+
19
+ import torch
20
+ import transformers
21
+
22
+ from .constants import IGNORE_INDEX, SENTINEL_TOKEN
23
+ from .conversation import SeparatorStyle, default_conversation
24
+ from .mm_utils import tokenizer_image_token
25
+
26
+ # __all__ = [
27
+ # "tokenize_conversation",
28
+ # "preprocess_conversation",
29
+ # "infer_stop_tokens",
30
+ # ]
31
+
32
+ DUMMY_CONVERSATION = [
33
+ {"from": "human", "value": "question"},
34
+ {"from": "gpt", "value": "answer"},
35
+ ] * 10
36
+
37
+
38
+ def tokenize_conversation_legacy(
39
+ messages: Sequence[Dict[str, str]],
40
+ tokenizer: transformers.PreTrainedTokenizer,
41
+ add_generation_prompt: bool = False,
42
+ overrides: Optional[Dict[str, str]] = None,
43
+ no_system_prompt: bool = False,
44
+ ) -> torch.Tensor:
45
+ conv = default_conversation.copy()
46
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
47
+
48
+ if no_system_prompt:
49
+ conv.system = ""
50
+
51
+ # Skip the first message if it is not from human
52
+ if messages[0]["from"] != "human":
53
+ messages = messages[1:]
54
+
55
+ # Add a generation prompt if needed
56
+ if add_generation_prompt:
57
+ messages.append({"from": "gpt", "value": None})
58
+
59
+ conv.messages = []
60
+ for turn, message in enumerate(messages):
61
+ role = roles[message["from"]]
62
+ assert role == conv.roles[turn % 2]
63
+ if overrides is not None and message["from"] in overrides:
64
+ conv.append_message(role, overrides[message["from"]])
65
+ else:
66
+ conv.append_message(role, message["value"])
67
+
68
+ return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")
69
+
70
+
71
+ def tokenize_conversation(
72
+ messages: Sequence[Dict[str, str]],
73
+ tokenizer: transformers.PreTrainedTokenizer,
74
+ add_generation_prompt: bool = False,
75
+ overrides: Optional[Dict[str, str]] = None,
76
+ no_system_prompt: bool = False,
77
+ ) -> torch.Tensor:
78
+ # Normalize the conversation before tokenization
79
+ for message in messages:
80
+ message["value"] = message["value"].strip()
81
+
82
+ if default_conversation.sep_style != SeparatorStyle.AUTO:
83
+ return tokenize_conversation_legacy(
84
+ messages,
85
+ tokenizer,
86
+ add_generation_prompt=add_generation_prompt,
87
+ overrides=overrides,
88
+ no_system_prompt=no_system_prompt,
89
+ )
90
+
91
+ conversation = []
92
+ for m in messages:
93
+ message = {}
94
+ if m["from"] == "human":
95
+ message["role"] = "user"
96
+ elif m["from"] == "gpt":
97
+ message["role"] = "assistant"
98
+ else:
99
+ raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")
100
+
101
+ message["content"] = m["value"]
102
+ if overrides is not None and m["from"] in overrides:
103
+ message["content"] = overrides[m["from"]]
104
+ conversation.append(message)
105
+
106
+ if no_system_prompt:
107
+ conversation = [{"role": "system", "content": ""}] + conversation
108
+
109
+ text = tokenizer.apply_chat_template(
110
+ conversation,
111
+ add_generation_prompt=add_generation_prompt,
112
+ tokenize=False,
113
+ )
114
+ return tokenizer_image_token(text, tokenizer, return_tensors="pt")
115
+
116
+
117
+ def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
118
+ if not hasattr(tokenizer, "sentinel_token"):
119
+ tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
120
+ tokenizer.sentinel_token = SENTINEL_TOKEN
121
+ tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)
122
+
123
+
124
+ def preprocess_conversation(
125
+ conversation: Sequence[Dict[str, str]],
126
+ tokenizer: transformers.PreTrainedTokenizer,
127
+ no_system_prompt: bool = False,
128
+ retried: bool = False,
129
+ ) -> Dict[str, Any]:
130
+ inputs = tokenize_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
131
+ labels = torch.ones_like(inputs) * IGNORE_INDEX
132
+
133
+ # Generate the template by replacing the assistant's response with a sentinel.
134
+ _maybe_add_sentinel_token(tokenizer)
135
+ template = tokenize_conversation(
136
+ conversation, tokenizer, overrides={"gpt": SENTINEL_TOKEN}, no_system_prompt=no_system_prompt
137
+ )
138
+
139
+ # Remove sentinel tokens from the template.
140
+ mask = torch.ones_like(template, dtype=torch.bool)
141
+ for k in range(template.size(0) - 1):
142
+ if template[k] == tokenizer.sentinel_token_id:
143
+ mask[k : k + 2] = False
144
+ # NOTE(zhijianl): This is to handle the corner case where there is an empty token before the sentinel token.
145
+ if k > 0 and retried:
146
+ mask[k - 1] = False
147
+ template = template[mask]
148
+
149
+ # Match the tokenized conversation with the template (with no assistant's response).
150
+ # Every token that is not matched will be included in the label for training.
151
+ p = 0
152
+ for k in range(inputs.size(0)):
153
+ if p < template.size(0) and inputs[k] == template[p]:
154
+ p += 1
155
+ else:
156
+ labels[k] = inputs[k]
157
+
158
+ # Mask all tokens in the label if the template is not fully matched.
159
+ if p < template.size(0):
160
+ if not retried:
161
+ return preprocess_conversation(
162
+ conversation,
163
+ tokenizer,
164
+ no_system_prompt=no_system_prompt,
165
+ retried=True,
166
+ )
167
+ print(f"Failed to process the conversation: '{conversation}'. All tokens will be masked in the label.")
168
+ labels[:] = IGNORE_INDEX
169
+
170
+ return {"input_ids": inputs, "labels": labels}
171
+
172
+
173
+ def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
174
+ _maybe_add_sentinel_token(tokenizer)
175
+ template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})
176
+
177
+ stop_tokens = {tokenizer.eos_token}
178
+ for k in range(template.size(0) - 1):
179
+ if template[k] == tokenizer.sentinel_token_id:
180
+ stop_token = tokenizer.decode(template[k + 1])
181
+ stop_tokens.add(stop_token)
182
+ return list(stop_tokens)
utils.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 NVIDIA CORPORATION & AFFILIATES
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # SPDX-License-Identifier: Apache-2.0
16
+ # This file is modified from https://github.com/haotian-liu/LLaVA/
17
+ import os
18
+ import os.path as osp
19
+
20
+ from huggingface_hub import repo_exists, snapshot_download
21
+ from huggingface_hub.utils import HFValidationError, validate_repo_id
22
+ from transformers import AutoConfig, AutoTokenizer, PretrainedConfig
23
+
24
+ from .configuration_vila import VILAConfig
25
+ from .constants import MEDIA_TOKENS
26
+ from .tokenizer_utils import infer_stop_tokens
27
+
28
+
29
+ def load_tokenizer_then_handle_media_tokens_and_chat_template(
30
+ model_name_or_path, config: VILAConfig, model_max_length=None
31
+ ):
32
+ # TODO(ligeng): a lot of copy-paste code, refactor to make a single function
33
+ tokenizer = AutoTokenizer.from_pretrained(
34
+ osp.join(model_name_or_path, "llm"), padding_side="right", use_fast=True, legacy=False
35
+ )
36
+ if model_max_length is not None:
37
+ tokenizer.model_max_length = model_max_length
38
+
39
+ # Load chat template if specified.
40
+ if getattr(config, "chat_template", None) is not None:
41
+ print(f"Using chat template: {config.chat_template}")
42
+ fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
43
+ if not os.path.exists(fpath):
44
+ fpath = os.path.join(os.path.dirname(model_name_or_path), f"{config.chat_template}.jinja")
45
+ with open(fpath) as fd:
46
+ chat_template = fd.read()
47
+ tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "")
48
+
49
+ # Set stop tokens for the tokenizer
50
+ tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
51
+ tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)
52
+
53
+ # Add media tokens to the tokenizer
54
+ tokenizer.media_tokens = MEDIA_TOKENS
55
+ tokenizer.media_token_ids = {}
56
+ for name, token in MEDIA_TOKENS.items():
57
+ tokenizer.add_tokens([token], special_tokens=True)
58
+ tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)
59
+
60
+ return tokenizer
61
+
62
+
63
+ def get_model_config(config):
64
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
65
+
66
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
67
+ root_path = config._name_or_path
68
+ else:
69
+ root_path = config.resume_path
70
+
71
+ # download from huggingface
72
+ if root_path is not None and not osp.exists(root_path):
73
+ try:
74
+ valid_hf_repo = repo_exists(root_path)
75
+ except HFValidationError as e:
76
+ valid_hf_repo = False
77
+ if valid_hf_repo:
78
+ root_path = snapshot_download(root_path)
79
+
80
+ return_list = []
81
+ for key in default_keys:
82
+ cfg = getattr(config, key, None)
83
+ if isinstance(cfg, dict):
84
+ try:
85
+ return_list.append(os.path.join(root_path, key[:-4]))
86
+ except:
87
+ raise ValueError(f"Cannot find resume path in config for {key}!")
88
+ elif isinstance(cfg, PretrainedConfig):
89
+ return_list.append(os.path.join(root_path, key[:-4]))
90
+ elif isinstance(cfg, str):
91
+ return_list.append(cfg)
92
+
93
+ return return_list
94
+
95
+
96
+ def get_model_config_fp8(config):
97
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
98
+
99
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
100
+ root_path = config._name_or_path
101
+ else:
102
+ root_path = config.resume_path
103
+
104
+ # download from huggingface
105
+ if root_path is not None and not osp.exists(root_path):
106
+ try:
107
+ valid_hf_repo = repo_exists(root_path)
108
+ except HFValidationError as e:
109
+ valid_hf_repo = False
110
+ if valid_hf_repo:
111
+ root_path = snapshot_download(root_path)
112
+
113
+ return_list = []
114
+ for key in default_keys:
115
+ cfg = getattr(config, key, None)
116
+ if isinstance(cfg, dict):
117
+ try:
118
+ return_list.append(os.path.join(root_path, key[:-4]))
119
+ except:
120
+ raise ValueError(f"Cannot find resume path in config for {key}!")
121
+ elif isinstance(cfg, PretrainedConfig):
122
+ return_list.append(os.path.join(root_path, key[:-4]))
123
+ elif isinstance(cfg, str):
124
+ return_list.append(cfg)
125
+
126
+ # fp8_llm
127
+ key = "fp8_llm_cfg"
128
+ directory_path = os.path.join(root_path, key[:-4])
129
+ assert os.path.isdir(directory_path) and os.listdir(
130
+ directory_path
131
+ ), "You need to first convert the model weights to FP8 explicitly."
132
+ return_list.append(directory_path)
133
+
134
+ return return_list
135
+
136
+
137
+ def get_model_config_fp8(config):
138
+ default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
139
+
140
+ if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
141
+ root_path = config._name_or_path
142
+ else:
143
+ root_path = config.resume_path
144
+
145
+ # download from huggingface
146
+ if root_path is not None and not osp.exists(root_path):
147
+ try:
148
+ valid_hf_repo = repo_exists(root_path)
149
+ except HFValidationError as e:
150
+ valid_hf_repo = False
151
+ if valid_hf_repo:
152
+ root_path = snapshot_download(root_path)
153
+
154
+ return_list = []
155
+ for key in default_keys:
156
+ cfg = getattr(config, key, None)
157
+ if isinstance(cfg, dict):
158
+ try:
159
+ return_list.append(os.path.join(root_path, key[:-4]))
160
+ except:
161
+ raise ValueError(f"Cannot find resume path in config for {key}!")
162
+ elif isinstance(cfg, PretrainedConfig):
163
+ return_list.append(os.path.join(root_path, key[:-4]))
164
+ elif isinstance(cfg, str):
165
+ return_list.append(cfg)
166
+
167
+ # fp8_llm
168
+ key = "fp8_llm_cfg"
169
+ directory_path = os.path.join(root_path, key[:-4])
170
+ assert os.path.isdir(directory_path) and os.listdir(
171
+ directory_path
172
+ ), "You need to first convert the model weights to FP8 explicitly."
173
+ return_list.append(directory_path)
174
+
175
+ return return_list
176
+
177
+
178
+ def is_mm_model(model_path):
179
+ """
180
+ Check if the model at the given path is a visual language model.
181
+
182
+ Args:
183
+ model_path (str): The path to the model.
184
+
185
+ Returns:
186
+ bool: True if the model is an MM model, False otherwise.
187
+ """
188
+ config = AutoConfig.from_pretrained(model_path)
189
+ architectures = config.architectures
190
+ for architecture in architectures:
191
+ if "llava" in architecture.lower():
192
+ return True
193
+ return False
194
+
195
+
196
+ def auto_upgrade(config):
197
+ cfg = AutoConfig.from_pretrained(config)
198
+ if "llava" in config and "llava" not in cfg.model_type:
199
+ assert cfg.model_type == "llama"
200
+ print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
201
+ print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
202
+ confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
203
+ if confirm.lower() in ["y", "yes"]:
204
+ print("Upgrading checkpoint...")
205
+ assert len(cfg.architectures) == 1
206
+ setattr(cfg.__class__, "model_type", "llava")
207
+ cfg.architectures[0] = "LlavaLlamaForCausalLM"
208
+ cfg.save_pretrained(config)
209
+ print("Checkpoint upgraded.")
210
+ else:
211
+ print("Checkpoint upgrade aborted.")
212
+ exit(1)
vision_tower/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "runs/train/NVILA-Lite-2B-sft-flux_schell_non_geneval/model/vision_tower",
3
+ "architectures": [
4
+ "SiglipVisionModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "hidden_act": "gelu_pytorch_tanh",
8
+ "hidden_size": 1152,
9
+ "image_size": 448,
10
+ "intermediate_size": 4304,
11
+ "layer_norm_eps": 1e-06,
12
+ "model_type": "siglip_vision_model",
13
+ "num_attention_heads": 16,
14
+ "num_channels": 3,
15
+ "num_hidden_layers": 27,
16
+ "num_image_tokens": 256,
17
+ "patch_size": 14,
18
+ "projection_dim": 2048,
19
+ "projector_hidden_act": "gelu_fast",
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.46.0",
22
+ "vision_use_head": false
23
+ }
vision_tower/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1702f07c7df0415cc49d97069d500929e1bd96d5747382a30db3bbdaac7bb545
3
+ size 826707904
vision_tower/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 448,
22
+ "width": 448
23
+ }
24
+ }