Delta-Vector commited on
Commit
f5efedf
·
verified ·
1 Parent(s): eb4a28b

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NewEden/Hamanasu-4B-R2
3
+ library_name: transformers
4
+ model_name: KTO-4B
5
+ tags:
6
+ - generated_from_trainer
7
+ - axolotl
8
+ - trl
9
+ - kto
10
+ licence: license
11
+ ---
12
+
13
+ # Model Card for KTO-4B
14
+
15
+ This model is a fine-tuned version of [NewEden/Hamanasu-4B-R2](https://huggingface.co/NewEden/Hamanasu-4B-R2).
16
+ It has been trained using [TRL](https://github.com/huggingface/trl).
17
+
18
+ ## Quick start
19
+
20
+ ```python
21
+ from transformers import pipeline
22
+
23
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
+ generator = pipeline("text-generation", model="NewEden/KTO-4B", device="cuda")
25
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
+ print(output["generated_text"])
27
+ ```
28
+
29
+ ## Training procedure
30
+
31
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/new-eden/tavbussy/runs/982iw1a7)
32
+
33
+
34
+ This model was trained with KTO, a method introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306).
35
+
36
+ ### Framework versions
37
+
38
+ - TRL: 0.15.1
39
+ - Transformers: 4.49.0
40
+ - Pytorch: 2.5.1+cu124
41
+ - Datasets: 3.4.1
42
+ - Tokenizers: 0.21.1
43
+
44
+ ## Citations
45
+
46
+ Cite KTO as:
47
+
48
+ ```bibtex
49
+ @article{ethayarajh2024kto,
50
+ title = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
51
+ author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
52
+ year = 2024,
53
+ eprint = {arXiv:2402.01306},
54
+ }
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```