--- library_name: transformers tags: - vision - image-segmentation - ecology datasets: - coralscapes metrics: - mean_iou license: apache-2.0 --- # Model Card for Model ID SegFormer model with a MiT-B2 backbone fine-tuned on Coralscapes at resolution 1024x1024, as introduced in [The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs](https://arxiv.org/abs/2503.20000). ## Model Details ### Model Description - **Model type:** SegFormer - **Finetuned from model:** [SegFormer (b2-sized) encoder pre-trained-only (`nvidia/mit-b2`)](https://huggingface.co/nvidia/mit-b2) ### Model Sources - **Repository:** [coralscapesScripts](https://github.com/eceo-epfl/coralscapesScripts/) - **Demo** [Hugging Face Spaces](https://huggingface.co/spaces/EPFL-ECEO/coralscapes_demo): ## How to Get Started with the Model The simplest way to use this model to segment an image of the Coralscapes dataset is as follows: ```python from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation from PIL import Image from datasets import load_dataset # Load an image from the coralscapes dataset or load your own image dataset = load_dataset("EPFL-ECEO/coralscapes") image = dataset["test"][42]["image"] preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024") inputs = preprocessor(image, return_tensors = "pt") outputs = model(**inputs) outputs = preprocessor.post_process_semantic_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])]) label_pred = outputs[0].numpy() ``` While using the above approach should still work for images of different sizes and scales, for images that are not close to the training size of the model (1024x1024), we recommend using the following approach using a sliding window to achieve better results: ```python import torch import torch.nn.functional as F from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation from PIL import Image import numpy as np from datasets import load_dataset device = 'cuda' if torch.cuda.is_available() else 'cpu' def resize_image(image, target_size=1024): """ Used to resize the image such that the smaller side equals 1024 """ h_img, w_img = image.size if h_img < w_img: new_h, new_w = target_size, int(w_img * (target_size / h_img)) else: new_h, new_w = int(h_img * (target_size / w_img)), target_size resized_img = image.resize((new_h, new_w)) return resized_img def segment_image(image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40, transform=None): """ Finds an optimal stride based on the image size and aspect ratio to create overlapping sliding windows of size 1024x1024 which are then fed into the model. """ h_crop, w_crop = crop_size img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0) batch_size, _, h_img, w_img = img.size() if transform: img = torch.Tensor(transform(image = img.numpy())["image"]).to(device) h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1 w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1 h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] with torch.no_grad(): if(preprocessor): inputs = preprocessor(crop_img, return_tensors = "pt") inputs["pixel_values"] = inputs["pixel_values"].to(device) else: inputs = crop_img.to(device) outputs = model(**inputs) resized_logits = F.interpolate( outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False ) preds += F.pad(resized_logits, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))).cpu() count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 preds = preds / count_mat preds = preds.argmax(dim=1) preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest') label_pred = preds.squeeze().cpu().numpy() return label_pred # Load an image from the coralscapes dataset or load your own image dataset = load_dataset("EPFL-ECEO/coralscapes") image = dataset["test"][42]["image"] preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024") label_pred = segment_image(image, preprocessor, model) ``` ## Training & Evaluation Details ### Data The model is trained and evaluated on the [Coralscapes dataset](https://huggingface.co/datasets/EPFL-ECEO/coralscapes) which is a general-purpose dense semantic segmentation dataset for coral reefs. ### Procedure Training is conducted following the Segformer original [implementation](https://proceedings.neurips.cc/paper_files/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf), using a batch size of 8 for 265 epochs, using the AdamW optimizer with an initial learning rate of 6e-5, weight decay of 1e-2 and polynomial learning rate scheduler with a power of 1. During training, images are randomly scaled within a range of 1 and 2, flipped horizontally with a 0.5 probability and randomly cropped to 1024×1024 pixels. Input images are normalized using the ImageNet mean and standard deviation. For evaluation, a non-overlapping sliding window strategy is employed, using a window size of 1024x1024. ### Results - Test Accuracy: 80.904 - Test Mean IoU: 54.682 ## Citation If you find this project useful, please consider citing: ```bibtex @misc{sauder2025coralscapesdatasetsemanticscene, title={The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs}, author={Jonathan Sauder and Viktor Domazetoski and Guilhem Banc-Prandi and Gabriela Perna and Anders Meibom and Devis Tuia}, year={2025}, eprint={2503.20000}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.20000}, } ```