File size: 10,429 Bytes
78b2a04
 
 
 
 
 
 
595d52d
78b2a04
 
 
 
 
 
cc7700a
 
595d52d
 
cc7700a
 
78b2a04
 
 
 
 
 
595d52d
78b2a04
 
 
 
 
cc7700a
78b2a04
cc7700a
78b2a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc7700a
78b2a04
595d52d
 
 
 
 
 
 
 
 
 
 
 
cc7700a
595d52d
 
 
 
78b2a04
cc7700a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b2a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
library_name: transformers
tags: []
---

# Model Card for Model ID

SegFormer model with a MiT-b2 backbone fine-tuned on Coralscapes at resolution 1024x1024, as introduced in ...


## Model Details

### Model Description

Training is conducted following the Segformer original [implementation](https://proceedings.neurips.cc/paper_files/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf), using a batch size of 8 for 265 epochs, 
using the AdamW optimizer with an initial learning rate of 6e-5, weight decay of 1e-2 and polynomial learning rate scheduler with a power of 1. 
During training, images are randomly scaled within a range of 1 and 2, flipped horizontally with a 0.5 probability and randomly cropped to 1024×1024 pixels. 
Input images are normalized using the ImageNet mean and standard deviation. For evaluation, a non-overlapping sliding window strategy is employed, 
using a window size of 1024x1024. 
<!-- TODO - We used a stride of 1024 but in the demo it is variable. Should we move this entire section to training below? -->

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model:** [SegFormer (b2-sized) encoder pre-trained-only (`nvidia/mit-b2`)](https://huggingface.co/nvidia/mit-b2)

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [coralscapesScripts](https://github.com/eceo-epfl/coralscapesScripts/)
- **Paper [optional]:** [More Information Needed]
- **Demo** [Hugging Face Spaces](https://huggingface.co/spaces/EPFL-ECEO/coralscapes_demo):

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

The simplest way to use this model to segment an image of the Coralscapes dataset is as follows:

```python
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from datasets import load_dataset

# Load an image from the coralscapes dataset or load your own image 
dataset = load_dataset("EPFL-ECEO/coralscapes") 
image = dataset["test"][42]["image"]

preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")

inputs = preprocessor(image, return_tensors = "pt")
outputs = model(**inputs)
outputs = preprocessor.post_process_semantic_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])])
label_pred = outputs[0].cpu().numpy()
```

While using the above approach should still work for images of different sizes and scales, for images that are not close to the training size of the model (1024x1024), 
we recommend using the following approach using a sliding window to achieve better results:

```python
import torch 
import torch.nn.functional as F
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from datasets import load_dataset
import numpy as np

def resize_image(image, target_size=1024):
    """
    Used to resize the image such that the smaller side equals 1024
    """
    h_img, w_img = image.size
    if h_img < w_img:
        new_h, new_w = target_size, int(w_img * (target_size / h_img))
    else:
        new_h, new_w  = int(h_img * (target_size / w_img)), target_size
    resized_img = image.resize((new_h, new_w))
    return resized_img

def segment_image(image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40, transform=None):
    """
    Finds an optimal stride based on the image size and aspect ratio to create
    overlapping sliding windows of size 1024x1024 which are then fed into the model.  
    """ 
    h_crop, w_crop = crop_size
    
    img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0)
    batch_size, _, h_img, w_img = img.size()
    
    if transform:
        img = torch.Tensor(transform(image = img.numpy())["image"]).to(device)    
        
    h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1
    w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1
    
    h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop
    w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop
    
    preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
    count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
    
    for h_idx in range(h_grids):
        for w_idx in range(w_grids):
          y1 = h_idx * h_stride
          x1 = w_idx * w_stride
          y2 = min(y1 + h_crop, h_img)
          x2 = min(x1 + w_crop, w_img)
          y1 = max(y2 - h_crop, 0)
          x1 = max(x2 - w_crop, 0)
          crop_img = img[:, :, y1:y2, x1:x2]
          with torch.no_grad():
            if(preprocessor):
                inputs = preprocessor(crop_img, return_tensors = "pt")
                inputs["pixel_values"] = inputs["pixel_values"].to(device)
            else:
                inputs = crop_img.to(device)
            outputs = model(**inputs)

          resized_logits = F.interpolate(
              outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False
          )
          preds += F.pad(resized_logits,
                          (int(x1), int(preds.shape[3] - x2), int(y1),
                          int(preds.shape[2] - y2)))
          count_mat[:, :, y1:y2, x1:x2] += 1
    
    assert (count_mat == 0).sum() == 0
    preds = preds / count_mat
    preds = preds.argmax(dim=1)
    preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest')
    label_pred = preds.squeeze().cpu().numpy()
    return label_pred

# Load an image from the coralscapes dataset or load your own image 
dataset = load_dataset("EPFL-ECEO/coralscapes") 
image = dataset["test"][42]["image"]

preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")

label_pred = segment_image(image, preprocessor, model)
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]