File size: 10,429 Bytes
78b2a04 595d52d 78b2a04 cc7700a 595d52d cc7700a 78b2a04 595d52d 78b2a04 cc7700a 78b2a04 cc7700a 78b2a04 cc7700a 78b2a04 595d52d cc7700a 595d52d 78b2a04 cc7700a 78b2a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
SegFormer model with a MiT-b2 backbone fine-tuned on Coralscapes at resolution 1024x1024, as introduced in ...
## Model Details
### Model Description
Training is conducted following the Segformer original [implementation](https://proceedings.neurips.cc/paper_files/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf), using a batch size of 8 for 265 epochs,
using the AdamW optimizer with an initial learning rate of 6e-5, weight decay of 1e-2 and polynomial learning rate scheduler with a power of 1.
During training, images are randomly scaled within a range of 1 and 2, flipped horizontally with a 0.5 probability and randomly cropped to 1024×1024 pixels.
Input images are normalized using the ImageNet mean and standard deviation. For evaluation, a non-overlapping sliding window strategy is employed,
using a window size of 1024x1024.
<!-- TODO - We used a stride of 1024 but in the demo it is variable. Should we move this entire section to training below? -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model:** [SegFormer (b2-sized) encoder pre-trained-only (`nvidia/mit-b2`)](https://huggingface.co/nvidia/mit-b2)
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [coralscapesScripts](https://github.com/eceo-epfl/coralscapesScripts/)
- **Paper [optional]:** [More Information Needed]
- **Demo** [Hugging Face Spaces](https://huggingface.co/spaces/EPFL-ECEO/coralscapes_demo):
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
The simplest way to use this model to segment an image of the Coralscapes dataset is as follows:
```python
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from datasets import load_dataset
# Load an image from the coralscapes dataset or load your own image
dataset = load_dataset("EPFL-ECEO/coralscapes")
image = dataset["test"][42]["image"]
preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
inputs = preprocessor(image, return_tensors = "pt")
outputs = model(**inputs)
outputs = preprocessor.post_process_semantic_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])])
label_pred = outputs[0].cpu().numpy()
```
While using the above approach should still work for images of different sizes and scales, for images that are not close to the training size of the model (1024x1024),
we recommend using the following approach using a sliding window to achieve better results:
```python
import torch
import torch.nn.functional as F
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
from datasets import load_dataset
import numpy as np
def resize_image(image, target_size=1024):
"""
Used to resize the image such that the smaller side equals 1024
"""
h_img, w_img = image.size
if h_img < w_img:
new_h, new_w = target_size, int(w_img * (target_size / h_img))
else:
new_h, new_w = int(h_img * (target_size / w_img)), target_size
resized_img = image.resize((new_h, new_w))
return resized_img
def segment_image(image, preprocessor, model, crop_size = (1024, 1024), num_classes = 40, transform=None):
"""
Finds an optimal stride based on the image size and aspect ratio to create
overlapping sliding windows of size 1024x1024 which are then fed into the model.
"""
h_crop, w_crop = crop_size
img = torch.Tensor(np.array(resize_image(image, target_size=1024)).transpose(2, 0, 1)).unsqueeze(0)
batch_size, _, h_img, w_img = img.size()
if transform:
img = torch.Tensor(transform(image = img.numpy())["image"]).to(device)
h_grids = int(np.round(3/2*h_img/h_crop)) if h_img > h_crop else 1
w_grids = int(np.round(3/2*w_img/w_crop)) if w_img > w_crop else 1
h_stride = int((h_img - h_crop + h_grids -1)/(h_grids -1)) if h_grids > 1 else h_crop
w_stride = int((w_img - w_crop + w_grids -1)/(w_grids -1)) if w_grids > 1 else w_crop
preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = img[:, :, y1:y2, x1:x2]
with torch.no_grad():
if(preprocessor):
inputs = preprocessor(crop_img, return_tensors = "pt")
inputs["pixel_values"] = inputs["pixel_values"].to(device)
else:
inputs = crop_img.to(device)
outputs = model(**inputs)
resized_logits = F.interpolate(
outputs.logits[0].unsqueeze(dim=0), size=crop_img.shape[-2:], mode="bilinear", align_corners=False
)
preds += F.pad(resized_logits,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
preds = preds / count_mat
preds = preds.argmax(dim=1)
preds = F.interpolate(preds.unsqueeze(0).type(torch.uint8), size=image.size[::-1], mode='nearest')
label_pred = preds.squeeze().cpu().numpy()
return label_pred
# Load an image from the coralscapes dataset or load your own image
dataset = load_dataset("EPFL-ECEO/coralscapes")
image = dataset["test"][42]["image"]
preprocessor = SegformerImageProcessor.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("EPFL-ECEO/segformer-b2-finetuned-coralscapes-1024-1024")
label_pred = segment_image(image, preprocessor, model)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |