--- language: en license: apache-2.0 tags: - fp256 - ultra-precision - transformer - experimental - research datasets: - interstellarninja/hermes_reasoning_tool_use - NousResearch/Hermes-3-Dataset - Salesforce/wikitext library_name: transformers model-index: - name: Gradia FP256 Series results: - task: type: text-generation name: Text Generation metrics: - type: perplexity value: ~1095.2 # exp(7.0035) name: Perplexity - type: loss value: 7.003514766 name: Training Loss --- # Gradia FP256 Model Gradia is an experimental high-precision transformer research project exploring the use of **FP256 (256-bit floating point)** in training language models. This model represents an early proof-of-concept demonstrating ultra-precision training. ## 🔬 About the Project **Gradia** aims to push the boundaries of numerical stability and gradient precision using extended floating-point formats, bypassing the limitations of mixed or standard FP32 training. This checkpoint was trained entirely in **true FP256 precision**. - **Precision**: Full 256-bit floating point (not mixed) - **Training Loss**: `7.003514766` - **Extreme Precision Events**: `14` - **Numerical Stability Saves**: `10` - **Gradient Stability Improvements**: `0` - **Training Stability Score**: `100, 100, 10...` ## 📐 Model Architecture - **Type**: Custom FP256 Transformer - **Parameters**: ~937,500 (estimated from 30MB FP256 checkpoint) - **Vocab Size**: 1,000 - **Hidden Size**: 256 - **Layers**: 4 - **Attention Heads**: 8 - **Intermediate Size**: 1,024 - **Max Sequence Length**: 128 - **Dropout**: 0.1 - **Model Size**: 30MB per checkpoint ## 📊 Training Details - **Datasets**: - [interstellarninja/hermes_reasoning_tool_use](https://huggingface.co/datasets/interstellarninja/hermes_reasoning_tool_use) - [NousResearch/Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset) - [Salesforce/wikitext](https://huggingface.co/datasets/Salesforce/wikitext) - **Training Steps**: 10 - **FP256 Optimizer**: Custom implementation - **Precision Benefits**: - 10 numerical stability interventions prevented training instabilities - 14 extreme precision events where FP256 was crucial - Perfect training stability scores maintained ## 📁 Checkpoint Contents This model contains the complete FP256 state including: - `embedding.weight` - Token embeddings - `pos_embedding.weight` - Positional embeddings - `transformer_blocks.{0-3}` - 4 transformer layers with: - Multi-head attention (q_proj, k_proj, v_proj, out_proj) - Feed-forward networks (dense1, dense2) - Layer normalizations (ln1, ln2) - `ln_final` - Final layer normalization ## 🔬 FP256 Implementation Notes - **Storage**: Each parameter stored as 256-bit floating point (32 bytes) - **Precision**: ~77 decimal digits of precision - **Memory Overhead**: ~16x larger than FP16 equivalent - **Numerical Stability**: Demonstrated prevention of gradient underflow/overflow - **Training Stability**: Maintained perfect stability scores throughout training ## 🚧 Status > ⚠️ This is a **research-stage model** and is **not production-ready**. Due to the use of FP256, inference and deployment require specialized FP256-compatible hardware and software frameworks. ## 🧠 Future Work - Scale to larger parameter counts (1M+ parameters) - Comparative analysis of FP256 vs FP32/FP16 convergence behavior - Open-source FP256 training framework - Extended training runs to evaluate long-term stability benefits ## 💾 Technical Requirements - **Inference**: Requires FP256-compatible runtime - **Hardware**: Specialized extended-precision arithmetic units recommended - **Memory**: ~16x standard memory requirements for equivalent model size ## ✍️ Citation If you use Gradia in your research, please cite: ```bibtex @misc{gradia2025, title={Gradia: Ultra-Precision Language Models with FP256 Training}, author={Entelijans, GLCTC Corp}, year={2025}, note={Experimental FP256 transformer implementation}, url={https://huggingface.co/ENTELIJANS} } ``` ## 📈 Performance Metrics | Metric | Value | Notes | |--------|-------|-------| | Training Loss | 7.003514766 | Step 10 (best checkpoint) | | Perplexity | ~1095.2 | exp(loss) | | Model Size | 30MB | FP256 precision | | Parameters | ~937K | Estimated from checkpoint size | | Stability Events | 10 | Numerical instabilities prevented | | Precision Events | 14 | Cases where FP256 was crucial |