Transformers
English
fp256
ultra-precision
transformer
experimental
research
Eval Results
FRTR4N commited on
Commit
53482c3
·
verified ·
1 Parent(s): 201bc51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -180
README.md CHANGED
@@ -1,200 +1,79 @@
1
  ---
2
- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
- {}
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
 
13
- ## Model Details
14
 
15
- ### Model Description
 
 
 
 
16
 
17
- <!-- Provide a longer summary of what this model is. -->
18
 
 
 
 
 
 
19
 
 
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
 
28
 
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
 
 
 
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
- ## Uses
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
 
41
- ### Direct Use
 
 
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
 
45
- [More Information Needed]
46
 
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - fp256
6
+ - ultra-precision
7
+ - transformer
8
+ - experimental
9
+ - research
10
+ datasets:
11
+ - interstellarninja/hermes_reasoning_tool_use
12
+ - NousResearch/Hermes-3-Dataset
13
+ library_name: transformers
14
+ model-index:
15
+ - name: Gradia FP256 Series
16
+ results: []
17
  ---
18
 
19
+ # Gradia FP256 Model Checkpoint 20
20
 
21
+ Gradia is an experimental high-precision transformer research project exploring the use of **FP256 (256-bit floating point)** in training language models. This model is part of an early proof-of-concept run.
22
 
23
+ ## 🔬 About the Project
24
 
25
+ **Gradia** aims to push the boundaries of numerical stability and gradient precision using extended floating-point formats, bypassing the limitations of mixed or standard FP32 training. This checkpoint (Step 20) was trained entirely in **true FP256 precision**, with a model size of ~500K parameters.
26
 
27
+ - **Precision**: Full 256-bit (not mixed)
28
+ - **Loss (Final)**: `6.97254610`
29
+ - **Extreme Precision Events Logged**: `28`
30
+ - **Numerical Stability Events**: `20`
31
+ - **Gradient Stability Improvements**: `0` (indicating raw gradient tracking)
32
 
33
+ ## 📐 Model Architecture
34
 
35
+ - **Type**: Transformer (custom)
36
+ - **Parameters**: 501,628
37
+ - **Layers**: 2 (assumed, based on parameter count and logs)
38
+ - **Embedding**: Positional + Token
39
+ - **Checkpoint Format**: PyTorch `.pt`
40
 
41
+ ## 📊 Training Details
42
 
43
+ - **Datasets**:
44
+ - [interstellarninja/hermes_reasoning_tool_use](https://huggingface.co/datasets/interstellarninja/hermes_reasoning_tool_use)
45
+ - [NousResearch/Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset)
46
+ - **Steps**: 20
47
+ - **Batch Size**: [specify if known]
48
+ - **Optimizer**: [specify if Adam, SGD, etc.]
49
+ - **Scheduler**: [specify type if known]
50
+ - **Loss Function**: [specify, e.g. CrossEntropyLoss]
51
 
52
+ ## 📁 Checkpoints
53
 
54
+ This repo contains:
55
+ - `checkpoint_10.pt`
56
+ - `checkpoint_20.pt`
57
+ - `best_model.pt` (selected based on lowest loss)
58
 
59
+ ## 🚧 Status
 
 
60
 
61
+ > ⚠️ This is a **research-stage model** and is **not production-ready**. Due to the use of FP256, inference and deployment require special tooling and hardware support.
62
 
63
+ ## 🧠 Future Work
64
 
65
+ - Larger parameter models (10M–1B) in FP256
66
+ - Analysis of convergence behavior vs FP32/FP16
67
+ - Open-source FP256 simulator tooling
68
 
69
+ ## ✍️ Citation
70
 
71
+ If you use Gradia in your research, please cite:
72
 
73
+ ```bibtex
74
+ @misc{gradia2025,
75
+ title={Gradia: Ultra-Precision Language Models in FP256},
76
+ author={The Gradia Project Contributors},
77
+ year={2025},
78
+ note={https://huggingface.co/Gradia}
79
+ }