--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: [] --- # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1018 - Accuracy: 0.8211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4646 | 1.0 | 527 | 1.1825 | 0.7867 | | 0.8559 | 2.0 | 1054 | 1.0389 | 0.8085 | | 0.6569 | 3.0 | 1581 | 1.0545 | 0.8222 | | 0.5672 | 4.0 | 2108 | 1.0577 | 0.8188 | | 0.5094 | 5.0 | 2635 | 1.0876 | 0.8211 | | 0.4717 | 6.0 | 3162 | 1.0979 | 0.8200 | | 0.4513 | 7.0 | 3689 | 1.1018 | 0.8211 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1