Duckets commited on
Commit
33374cb
·
verified ·
1 Parent(s): 8d721a0

Upload Duckbot.py

Browse files
Files changed (1) hide show
  1. Duckbot.py +60 -0
Duckbot.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Trainer, TrainingArguments
3
+ from Features.chat_interface import start_chat_interface
4
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Trainer, TrainingArguments
5
+ from Features.chat_interface import start_chat_interface
6
+ import start_chat_interface, generate_response # Import needed functions
7
+ import os
8
+
9
+ # --- Step 1: Prepare Your Data ---
10
+ data = pd.read_csv("your_chatbot_data.csv") # Replace with your dataset file
11
+ data = data[["user_input", "chatbot_response"]] # Adjust column names if needed
12
+ data_path = "data/chatbot_data.csv"
13
+ data = pd.read_csv(data_path)
14
+
15
+ # --- Step 2: Choose a Pre-trained Model ---
16
+ model_name = "microsoft/DialoGPT-medium" # A good starting point, experiment with others!
17
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
18
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
19
+
20
+ # --- Step 3: Tokenize the Data ---
21
+ def preprocess(examples):
22
+ inputs = [ex + tokenizer.eos_token for ex in examples["user_input"]]
23
+ targets = examples["chatbot_response"]
24
+ model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding=True)
25
+
26
+ with tokenizer.as_target_tokenizer():
27
+ model_inputs["labels"] = tokenizer(targets, max_length=128, truncation=True, padding=True).input_ids
28
+
29
+ return model_inputs
30
+
31
+ tokenized_data = data.apply(preprocess, axis=1)
32
+
33
+ # --- Step 4: Fine-Tune the Model ---
34
+ training_args = TrainingArguments(
35
+ "my-chatbot", # Output folder name
36
+ evaluation_strategy="steps",
37
+ learning_rate=2e-5,
38
+ per_device_train_batch_size=8,
39
+ per_device_eval_batch_size=8,
40
+ num_train_epochs=3,
41
+ weight_decay=0.01,
42
+ save_steps=500, # Save model checkpoint every 500 steps
43
+ push_to_hub=True, # Push the model to your Hugging Face Hub
44
+ )
45
+
46
+ trainer = Trainer(
47
+ model=model,
48
+ args=training_args,
49
+ train_dataset=tokenized_data,
50
+ eval_dataset=tokenized_data,
51
+ )
52
+
53
+ trainer.train()
54
+
55
+ # --- Step 5: Use Your Fine-Tuned Model (After Training) ---
56
+ def generate_response(user_input):
57
+ input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
58
+ output_sequences = model.generate(input_ids=input_ids)
59
+ response = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
60
+ return response