--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: cognitivecomputations/dolphin-2.1-mistral-7b model-index: - name: doplhin-mistral-dpo-ultrafeedback-binarized-preferences-kto_pair results: [] --- # doplhin-mistral-dpo-ultrafeedback-binarized-preferences-kto_pair This model is a fine-tuned version of [cognitivecomputations/dolphin-2.1-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.1-mistral-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2024 - Rewards/chosen: 3.9237 - Rewards/rejected: -1.2199 - Rewards/accuracies: 0.7871 - Rewards/margins: 5.1437 - Logps/rejected: -319.8331 - Logps/chosen: -311.9210 - Logits/rejected: -2.2827 - Logits/chosen: -2.4135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2261 | 0.25 | 700 | 0.2691 | 3.8384 | 0.5201 | 0.6951 | 3.3183 | -302.4326 | -312.7741 | -2.4004 | -2.5103 | | 0.1934 | 0.51 | 1400 | 0.2197 | 3.0918 | -2.0543 | 0.7802 | 5.1461 | -328.1768 | -320.2403 | -2.3140 | -2.4316 | | 0.2163 | 0.76 | 2100 | 0.2024 | 3.9237 | -1.2199 | 0.7871 | 5.1437 | -319.8331 | -311.9210 | -2.2827 | -2.4135 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2