--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: cognitivecomputations/dolphin-2.1-mistral-7b model-index: - name: doplhin-mistral-dpo-ultrafeedback-binarized-preferences-sigmoid results: [] --- # doplhin-mistral-dpo-ultrafeedback-binarized-preferences-sigmoid This model is a fine-tuned version of [cognitivecomputations/dolphin-2.1-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.1-mistral-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6025 - Rewards/chosen: -7.8168 - Rewards/rejected: -14.5388 - Rewards/accuracies: 0.8310 - Rewards/margins: 6.7220 - Logps/rejected: -469.4976 - Logps/chosen: -438.1190 - Logits/rejected: -2.1911 - Logits/chosen: -2.3064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.0466 | 0.25 | 700 | 0.8185 | -6.6407 | -9.8742 | 0.7464 | 3.2335 | -422.8520 | -426.3579 | -2.3161 | -2.4530 | | 0.7039 | 0.51 | 1400 | 0.7051 | -6.5305 | -12.5351 | 0.8085 | 6.0046 | -449.4607 | -425.2558 | -2.1415 | -2.2554 | | 0.9519 | 0.76 | 2100 | 0.6025 | -7.8168 | -14.5388 | 0.8310 | 6.7220 | -469.4976 | -438.1190 | -2.1911 | -2.3064 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2