--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: cognitivecomputations/dolphin-2.1-mistral-7b model-index: - name: doplhin-2.1-mistral-7b-dpo-ultrafeedback-binarized-preferences-ipo results: [] --- # doplhin-2.1-mistral-7b-dpo-ultrafeedback-binarized-preferences-ipo This model is a fine-tuned version of [cognitivecomputations/dolphin-2.1-mistral-7b](https://huggingface.co/cognitivecomputations/dolphin-2.1-mistral-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 13.6404 - Rewards/chosen: -0.4693 - Rewards/rejected: -0.7026 - Rewards/accuracies: 0.8234 - Rewards/margins: 0.2333 - Logps/rejected: -9.0933 - Logps/chosen: -6.2746 - Logits/rejected: -0.8214 - Logits/chosen: -0.8422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 17.7871 | 0.25 | 700 | 16.4082 | -0.2243 | -0.3706 | 0.7903 | 0.1464 | -5.7735 | -3.8245 | -1.8423 | -1.8837 | | 13.4212 | 0.51 | 1400 | 14.5490 | -0.4924 | -0.7383 | 0.8092 | 0.2459 | -9.4501 | -6.5058 | -0.9174 | -0.9510 | | 13.2665 | 0.76 | 2100 | 13.6404 | -0.4693 | -0.7026 | 0.8234 | 0.2333 | -9.0933 | -6.2746 | -0.8214 | -0.8422 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2