--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-multilingual-cased-language-detection-fp16-true-bs-64 results: [] --- # distilbert-base-multilingual-cased-language-detection-fp16-true-bs-64 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0092 - Accuracy: 0.9992 - Weighted f1: 0.9992 - Micro f1: 0.9992 - Macro f1: 0.9992 - Weighted recall: 0.9992 - Micro recall: 0.9992 - Macro recall: 0.9992 - Weighted precision: 0.9992 - Micro precision: 0.9992 - Macro precision: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.1688 | 1.0 | 165 | 0.0092 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | | 0.0103 | 2.0 | 330 | 0.0262 | 0.9909 | 0.9909 | 0.9909 | 0.9907 | 0.9909 | 0.9909 | 0.9906 | 0.9911 | 0.9909 | 0.9910 | | 0.0028 | 3.0 | 495 | 0.0014 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | | 0.001 | 4.0 | 660 | 0.0020 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | | 0.0007 | 5.0 | 825 | 0.0016 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3