jiacheng-ye commited on
Commit
373705a
·
verified ·
1 Parent(s): 2b4b0c0

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Dream-org/Dream-7B-instruct-v0-preview",
3
+ "architectures": [
4
+ "DreamModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_dream.DreamConfig",
9
+ "AutoModel": "modeling_dream.DreamModel"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "eos_token_id": 151643,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 3584,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 18944,
17
+ "mask_token_id": 151666,
18
+ "max_position_embeddings": 131072,
19
+ "max_window_layers": 28,
20
+ "model_type": "Dream",
21
+ "num_attention_heads": 28,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 4,
24
+ "pad_token_id": 151643,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.46.2",
32
+ "use_cache": true,
33
+ "use_mrope": false,
34
+ "use_sliding_window": false,
35
+ "vocab_size": 152064
36
+ }
configuration_dream.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Dream model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class DreamConfig(PretrainedConfig):
26
+ model_type = "Dream"
27
+ keys_to_ignore_at_inference = ["past_key_values"]
28
+
29
+ def __init__(
30
+ self,
31
+ vocab_size=151936,
32
+ hidden_size=4096,
33
+ intermediate_size=22016,
34
+ num_hidden_layers=32,
35
+ num_attention_heads=32,
36
+ num_key_value_heads=32,
37
+ hidden_act="silu",
38
+ max_position_embeddings=32768,
39
+ initializer_range=0.02,
40
+ rms_norm_eps=1e-6,
41
+ use_cache=False, # cache not used in diffusion
42
+ tie_word_embeddings=False,
43
+ rope_theta=10000.0,
44
+ rope_scaling=None,
45
+ use_sliding_window=False,
46
+ sliding_window=4096,
47
+ max_window_layers=28,
48
+ attention_dropout=0.0,
49
+ mask_token_id=151666,
50
+ pad_token_id=151643,
51
+ **kwargs,
52
+ ):
53
+ self.vocab_size = vocab_size
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.hidden_size = hidden_size
56
+ self.intermediate_size = intermediate_size
57
+ self.num_hidden_layers = num_hidden_layers
58
+ self.num_attention_heads = num_attention_heads
59
+ self.use_sliding_window = use_sliding_window
60
+ self.sliding_window = sliding_window if use_sliding_window else None
61
+ self.max_window_layers = max_window_layers
62
+
63
+ # for backward compatibility
64
+ if num_key_value_heads is None:
65
+ num_key_value_heads = num_attention_heads
66
+
67
+ self.num_key_value_heads = num_key_value_heads
68
+ self.hidden_act = hidden_act
69
+ self.initializer_range = initializer_range
70
+ self.rms_norm_eps = rms_norm_eps
71
+ self.use_cache = use_cache
72
+ self.rope_theta = rope_theta
73
+ self.rope_scaling = rope_scaling
74
+ self.attention_dropout = attention_dropout
75
+ # Validate the correctness of rotary position embeddings parameters
76
+ # BC: if there is a 'type' field, move it to 'rope_type'.
77
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
78
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
79
+ rope_config_validation(self)
80
+
81
+ super().__init__(
82
+ tie_word_embeddings=tie_word_embeddings,
83
+ **kwargs,
84
+ )
85
+ self.mask_token_id = mask_token_id
86
+ self.pad_token_id = pad_token_id
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "alg": "origin",
4
+ "alg_temp": null,
5
+ "bos_token_id": 151643,
6
+ "eos_token_id": 151643,
7
+ "eps": 0.001,
8
+ "mask_token_id": null,
9
+ "output_history": false,
10
+ "pad_token_id": 151643,
11
+ "steps": 512,
12
+ "temperature": 0.0,
13
+ "top_k": null,
14
+ "top_p": null,
15
+ "transformers_version": "4.46.2"
16
+ }
generation_utils.py ADDED
@@ -0,0 +1,446 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warnings
17
+ import copy
18
+ from dataclasses import dataclass
19
+ from typing import Any, Dict, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.distributions as dists
23
+ from torch.nn import functional as F
24
+ from transformers import __version__
25
+ from transformers.generation.configuration_utils import (
26
+ GenerationConfig
27
+ )
28
+ from transformers.utils import (
29
+ ModelOutput,
30
+ is_torchdynamo_compiling,
31
+ logging,
32
+ )
33
+
34
+ logger = logging.get_logger(__name__)
35
+
36
+
37
+ def top_p_logits(logits, top_p=None):
38
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
39
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
40
+ sorted_indices_to_remove = cumulative_probs > top_p
41
+ # Shift the indices to the right to keep the first token above the threshold
42
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
43
+ sorted_indices_to_remove[..., 0] = 0
44
+
45
+ mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
46
+ mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
47
+ logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
48
+ return logits
49
+
50
+ def top_k_logits(logits, top_k=None):
51
+ top_k = min(top_k, logits.size(-1)) # Safety check
52
+ # Remove all tokens with a probability less than the last token of the top-k
53
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
54
+ logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
55
+ return logits
56
+
57
+
58
+ def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
59
+
60
+ if temperature > 0:
61
+ logits = logits / temperature
62
+ if top_p is not None and top_p < 1:
63
+ logits = top_p_logits(logits, top_p)
64
+ if top_k is not None:
65
+ logits = top_k_logits(logits, top_k)
66
+ probs = torch.softmax(logits, dim=-1)
67
+
68
+ if temperature > 0:
69
+ try:
70
+ x0 = dists.Categorical(probs=probs).sample()
71
+ confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
72
+ except:
73
+ confidence, x0 = probs.max(dim=-1)
74
+ else:
75
+ confidence, x0 = probs.max(dim=-1)
76
+
77
+ if margin_confidence:
78
+ sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
79
+ # Extract top1 and top2 probabilities
80
+ top1_probs = sorted_probs[:, 0]
81
+ top2_probs = sorted_probs[:, 1]
82
+ # Calculate confidence as top1 - top2
83
+ confidence = top1_probs - top2_probs
84
+
85
+ if neg_entropy:
86
+ epsilon = 1e-10
87
+ log_probs = torch.log(probs + epsilon)
88
+ confidence = torch.sum(probs * log_probs, dim=-1)
89
+
90
+ return confidence, x0
91
+
92
+
93
+ @dataclass
94
+ class DreamModelOutput(ModelOutput):
95
+ sequences: torch.LongTensor = None
96
+ history: Optional[Tuple[torch.FloatTensor]] = None
97
+
98
+
99
+ class DreamGenerationConfig(GenerationConfig):
100
+ def __init__(self, **kwargs):
101
+ self.temperature: float = kwargs.pop("temperature", 0.0)
102
+ self.top_p: Optional[float] = kwargs.pop("top_p", None)
103
+ self.top_k: Optional[int] = kwargs.pop("top_k", None)
104
+ self.max_length = kwargs.pop("max_length", 20)
105
+ self.max_new_tokens = kwargs.pop("max_new_tokens", None)
106
+ # diffusion specific params
107
+ self.eps: float = kwargs.pop("eps", 1e-3)
108
+ self.steps: int = kwargs.pop("steps", 512)
109
+ self.alg: str = kwargs.pop("alg", 'origin')
110
+ self.alg_temp: Optional[float] = kwargs.pop("alg_temp", None)
111
+
112
+ # Parameters that define the output variables of `generate`
113
+ self.num_return_sequences: int = kwargs.pop("num_return_sequences", 1)
114
+ self.return_dict_in_generate: bool = kwargs.pop("return_dict_in_generate", False)
115
+ self.output_history: bool = kwargs.pop("output_history", False)
116
+
117
+ # Special tokens that can be used at generation time
118
+ self.mask_token_id = kwargs.pop("mask_token_id", None)
119
+ self.pad_token_id = kwargs.pop("pad_token_id", None)
120
+ self.bos_token_id = kwargs.pop("bos_token_id", None)
121
+ self.eos_token_id = kwargs.pop("eos_token_id", None)
122
+
123
+ # Wild card
124
+ self.generation_kwargs = kwargs.pop("generation_kwargs", {})
125
+
126
+ # The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
127
+ # interface.
128
+ self._from_model_config = kwargs.pop("_from_model_config", False)
129
+ self._commit_hash = kwargs.pop("_commit_hash", None)
130
+ self.transformers_version = kwargs.pop("transformers_version", __version__)
131
+
132
+ # Additional attributes without default values
133
+ if not self._from_model_config:
134
+ # we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
135
+ # model's default configuration file
136
+ for key, value in kwargs.items():
137
+ try:
138
+ setattr(self, key, value)
139
+ except AttributeError as err:
140
+ logger.error(f"Can't set {key} with value {value} for {self}")
141
+ raise err
142
+
143
+ # Validate the values of the attributes
144
+ self.validate(is_init=True)
145
+
146
+ def validate(self, is_init=False):
147
+ pass
148
+
149
+ class DreamGenerationMixin:
150
+ @staticmethod
151
+ def _expand_inputs_for_generation(
152
+ expand_size: int = 1,
153
+ input_ids: Optional[torch.LongTensor] = None,
154
+ attention_mask: Optional[torch.LongTensor] = None
155
+ ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
156
+ """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
157
+ # Do not call torch.repeat_interleave if expand_size is 1 because it clones
158
+ # the input tensor and thus requires more memory although no change is applied
159
+ if expand_size == 1:
160
+ return input_ids, attention_mask
161
+ if input_ids is not None:
162
+ input_ids = input_ids.repeat_interleave(expand_size, dim=0)
163
+ if attention_mask is not None:
164
+ attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
165
+ return input_ids, attention_mask
166
+
167
+ def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
168
+ """Performs validation related to the resulting generated length"""
169
+
170
+ # Can't throw warnings/exceptions during compilation
171
+ if is_torchdynamo_compiling():
172
+ return
173
+
174
+ # 1. Max length warnings related to poor parameterization
175
+ if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
176
+ # 20 is the default max_length of the generation config
177
+ warnings.warn(
178
+ f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
179
+ "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
180
+ "generation.",
181
+ UserWarning,
182
+ )
183
+ if input_ids_length >= generation_config.max_length:
184
+ input_ids_string = "input_ids"
185
+ raise ValueError(
186
+ f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
187
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
188
+ " increasing `max_length` or, better yet, setting `max_new_tokens`."
189
+ )
190
+
191
+ def _prepare_generated_length(
192
+ self,
193
+ generation_config,
194
+ has_default_max_length,
195
+ input_ids_length,
196
+ ):
197
+ """Prepared max and min length in generation configs to avoid clashes between similar attributes"""
198
+
199
+ if generation_config.max_new_tokens is not None:
200
+ if not has_default_max_length and generation_config.max_length is not None:
201
+ logger.warning(
202
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
203
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
204
+ "Please refer to the documentation for more information. "
205
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
206
+ )
207
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_length
208
+
209
+ elif has_default_max_length:
210
+ if generation_config.max_length == DreamGenerationConfig().max_length:
211
+ generation_config.max_length = generation_config.max_length + input_ids_length
212
+ max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
213
+ if max_position_embeddings is not None:
214
+ generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
215
+
216
+ return generation_config
217
+
218
+ def _prepare_generation_config(
219
+ self, generation_config: Optional[DreamGenerationConfig], **kwargs: Dict
220
+ ) -> DreamGenerationConfig:
221
+ """
222
+ Prepares the base generation config, then applies any generation configuration options from kwargs. This
223
+ function handles retrocompatibility with respect to configuration files.
224
+ """
225
+ # priority: `generation_config` argument > `model.generation_config` (the default generation config)
226
+ using_model_generation_config = False
227
+ if generation_config is None:
228
+ generation_config = DreamGenerationConfig.from_model_config(self.config)
229
+ using_model_generation_config = True
230
+
231
+ # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
232
+ # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
233
+ # exception will be raised in `_validate_model_kwargs`
234
+ if not is_torchdynamo_compiling():
235
+ generation_config = copy.deepcopy(generation_config)
236
+ _kwargs = generation_config.update(**kwargs)
237
+ # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
238
+ if not using_model_generation_config:
239
+ if generation_config.bos_token_id is None:
240
+ generation_config.bos_token_id = self.generation_config.bos_token_id
241
+ if generation_config.eos_token_id is None:
242
+ generation_config.eos_token_id = self.generation_config.eos_token_id
243
+ if generation_config.pad_token_id is None:
244
+ generation_config.pad_token_id = self.generation_config.pad_token_id
245
+ if generation_config.mask_token_id is None:
246
+ generation_config.mask_token_id = self.generation_config.mask_token_id
247
+
248
+ return generation_config
249
+
250
+ def _prepare_special_tokens(
251
+ self,
252
+ generation_config: DreamGenerationConfig,
253
+ device: Optional[Union[torch.device, str]] = None,
254
+ ):
255
+ """
256
+ Prepares the special tokens for generation, overwriting the generation config with their processed versions
257
+ converted to tensor.
258
+
259
+ Note that `generation_config` is changed in place and stops being serializable after this method is called.
260
+ That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
261
+ function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
262
+ """
263
+
264
+ # Convert special tokens to tensors
265
+ def _tensor_or_none(token, device=None):
266
+ if token is None:
267
+ return token
268
+
269
+ device = device if device is not None else self.device
270
+ if isinstance(token, torch.Tensor):
271
+ return token.to(device)
272
+ return torch.tensor(token, device=device, dtype=torch.long)
273
+
274
+ bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
275
+ eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
276
+ pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
277
+ mask_token_tensor = _tensor_or_none(generation_config.mask_token_id, device=device)
278
+
279
+ # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
280
+ if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
281
+ eos_token_tensor = eos_token_tensor.unsqueeze(0)
282
+
283
+ # Set pad token if unset (and there are conditions to do so)
284
+ if pad_token_tensor is None and eos_token_tensor is not None:
285
+ pad_token_tensor = eos_token_tensor[0]
286
+ logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
287
+
288
+ # Update generation config with the updated special tokens tensors
289
+ # NOTE: this must be written into a different attribute name than the one holding the original special tokens
290
+ # (in their non-tensor form), in order to enable end-to-end compilation. See
291
+ # https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
292
+ generation_config._bos_token_tensor = bos_token_tensor
293
+ generation_config._eos_token_tensor = eos_token_tensor
294
+ generation_config._pad_token_tensor = pad_token_tensor
295
+ generation_config._mask_token_tensor = mask_token_tensor
296
+
297
+ @torch.no_grad()
298
+ def diffusion_generate(
299
+ self,
300
+ inputs: Optional[torch.Tensor] = None,
301
+ generation_config: Optional[DreamGenerationConfig] = None,
302
+ **kwargs,
303
+ ) -> Union[DreamModelOutput, torch.LongTensor]:
304
+ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
305
+ tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
306
+ generation_config = self._prepare_generation_config(generation_config, **kwargs)
307
+
308
+ # 2. Define model inputs
309
+ assert inputs is not None
310
+ input_ids = inputs
311
+ device = input_ids.device
312
+ attention_mask = kwargs.pop("attention_mask", None)
313
+ self._prepare_special_tokens(generation_config, device=device)
314
+
315
+ # 3. Prepare `max_length`.
316
+ input_ids_length = input_ids.shape[-1]
317
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
318
+ generation_config = self._prepare_generated_length(
319
+ generation_config=generation_config,
320
+ has_default_max_length=has_default_max_length,
321
+ input_ids_length=input_ids_length,
322
+ )
323
+
324
+ self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
325
+
326
+ # 4. Check input_ids
327
+ if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
328
+ warnings.warn(
329
+ "You are calling .generate() with the `input_ids` being on a device type different"
330
+ f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
331
+ f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
332
+ " Please make sure that you have put `input_ids` to the"
333
+ f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
334
+ " running `.generate()`.",
335
+ UserWarning,
336
+ )
337
+ if (
338
+ hasattr(generation_config, "pad_token_id") and
339
+ torch.any(input_ids == generation_config.pad_token_id) and
340
+ attention_mask is None
341
+ ):
342
+ warnings.warn(
343
+ "Padding was detected but no attention mask is passed here. For correct "
344
+ "generation results, please set `attention_mask` when batch-padding inputs.",
345
+ UserWarning,
346
+ )
347
+
348
+ input_ids, attention_mask = self._expand_inputs_for_generation(
349
+ expand_size=generation_config.num_return_sequences,
350
+ input_ids=input_ids,
351
+ attention_mask=attention_mask
352
+ )
353
+
354
+ result = self._sample(
355
+ input_ids,
356
+ attention_mask=attention_mask,
357
+ generation_config=generation_config,
358
+ )
359
+ return result
360
+
361
+ def _sample(
362
+ self,
363
+ input_ids: torch.LongTensor,
364
+ attention_mask: Optional[torch.LongTensor],
365
+ generation_config: DreamGenerationConfig,
366
+ ) -> Union[DreamModelOutput, torch.LongTensor]:
367
+ # init values
368
+ output_history = generation_config.output_history
369
+ return_dict_in_generate = generation_config.return_dict_in_generate
370
+ max_length = generation_config.max_length
371
+ mask_token_id = generation_config.mask_token_id
372
+ steps = generation_config.steps
373
+ eps = generation_config.eps
374
+ alg = generation_config.alg
375
+ alg_temp = generation_config.alg_temp
376
+ temperature = generation_config.temperature
377
+ top_p = generation_config.top_p
378
+ top_k = generation_config.top_k
379
+
380
+ histories = [] if (return_dict_in_generate and output_history) else None
381
+
382
+ # pad input_ids to max_length
383
+ x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
384
+
385
+ if attention_mask is not None and torch.any(attention_mask == 0.0):
386
+ # we do not mask the [MASK] tokens so value = 1.0
387
+ attention_mask = F.pad(attention_mask, (0, max_length - attention_mask.shape[1]), value=1.0)
388
+ tok_idx = attention_mask.long().cumsum(-1) - 1
389
+ tok_idx.masked_fill_(attention_mask == 0, 1)
390
+ # attention_mask is of shape [B, N]
391
+ # broadcast to [B, 1, N, N]
392
+ attention_mask = torch.logical_and(
393
+ attention_mask.unsqueeze(1).unsqueeze(-2),
394
+ attention_mask.unsqueeze(1).unsqueeze(-1),
395
+ )
396
+ else:
397
+ tok_idx = None
398
+ attention_mask = "full"
399
+
400
+ timesteps = torch.linspace(1, eps, steps + 1, device=x.device)
401
+ for i in range(steps):
402
+ mask_index = (x == mask_token_id)
403
+ logits = self(x, attention_mask, tok_idx).logits
404
+ logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
405
+ logits = logits[mask_index]
406
+ t = timesteps[i]
407
+ s = timesteps[i + 1]
408
+
409
+ if alg == 'origin':
410
+ p_transfer = 1 - s / t if i < steps - 1 else 1
411
+ x0 = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
412
+ transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer
413
+ _, x0[transfer_index_t_s]= sample_tokens(logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k)
414
+ x[mask_index] = x0.clone()
415
+ else:
416
+ if alg == 'maskgit_plus':
417
+ confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k)
418
+ elif alg == 'topk_margin':
419
+ confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True)
420
+ elif alg == 'entropy':
421
+ confidence, x0 = sample_tokens(logits, temperature, top_p=top_p, top_k=top_k, neg_entropy=True)
422
+ else:
423
+ raise RuntimeError(f"Unknown alg: {alg}")
424
+ num_mask_token = mask_index.sum()
425
+ number_transfer_tokens = int(num_mask_token * (1 - s / t)) if i < steps - 1 else num_mask_token
426
+ if number_transfer_tokens > 0:
427
+ if alg_temp is None or alg_temp == 0:
428
+ _, transfer_index = torch.topk(confidence, number_transfer_tokens)
429
+ else:
430
+ confidence = confidence / alg_temp
431
+ confidence = F.softmax(confidence, dim=-1)
432
+ transfer_index = torch.multinomial(confidence, num_samples=number_transfer_tokens)
433
+ x0_ = torch.zeros_like(x0, device=self.device, dtype=torch.long) + mask_token_id
434
+ x0_[transfer_index] = x0[transfer_index].clone()
435
+ x[mask_index] = x0_
436
+
437
+ if histories is not None:
438
+ histories.append(x.clone())
439
+
440
+ if return_dict_in_generate:
441
+ return DreamModelOutput(
442
+ sequences=x,
443
+ history=histories,
444
+ )
445
+ else:
446
+ return x
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3014d84950f2f3afcce622508b6625e9cd911b9c340f4206e35e6a3177aec993
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78fc44a7eae29c3d13bba010ca12584f4220798d41c9e617579a33c47222aa57
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eac5afaf9a0e0b4a23c7ac1dbe5f538ccdf9fac5c0db7919fd9625a92c378e48
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:398da65f1f599ca8d594a9d7a077a3b7c4eb0ddfdff8e7e004c3d259712b3cb7
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
modeling_dream.py ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT and Qwen implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT and Qwen used by the Meta AI and Qwen team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Dream model."""
21
+
22
+ import math
23
+ from typing import List, Optional, Tuple, Union
24
+ import os
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutput,
33
+ MaskedLMOutput,
34
+ )
35
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ )
44
+ from transformers import PretrainedConfig
45
+ from .configuration_dream import DreamConfig
46
+ from .generation_utils import DreamGenerationMixin, DreamGenerationConfig
47
+
48
+ if is_flash_attn_2_available():
49
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+
55
+ _CHECKPOINT_FOR_DOC = "Dream-7B"
56
+ _CONFIG_FOR_DOC = "DreamConfig"
57
+
58
+
59
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Dream
60
+ class DreamRMSNorm(nn.Module):
61
+ def __init__(self, hidden_size, eps=1e-6):
62
+ """
63
+ DreamRMSNorm is equivalent to T5LayerNorm
64
+ """
65
+ super().__init__()
66
+ self.weight = nn.Parameter(torch.ones(hidden_size))
67
+ self.variance_epsilon = eps
68
+
69
+ def forward(self, hidden_states):
70
+ input_dtype = hidden_states.dtype
71
+ hidden_states = hidden_states.to(torch.float32)
72
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
73
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
74
+ return self.weight * hidden_states.to(input_dtype)
75
+
76
+ def extra_repr(self):
77
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
78
+
79
+
80
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Dream
81
+ class DreamRotaryEmbedding(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=None,
85
+ max_position_embeddings=2048,
86
+ base=10000,
87
+ device=None,
88
+ scaling_factor=1.0,
89
+ rope_type="default",
90
+ config: Optional[DreamConfig] = None,
91
+ ):
92
+ super().__init__()
93
+ # TODO (joao): remove the `if` below, only used for BC
94
+ self.rope_kwargs = {}
95
+ if config is None:
96
+ logger.warning_once(
97
+ "`DreamRotaryEmbedding` can now be fully parameterized by passing the model config through the "
98
+ "`config` argument. All other arguments will be removed in v4.46"
99
+ )
100
+ self.rope_kwargs = {
101
+ "rope_type": rope_type,
102
+ "factor": scaling_factor,
103
+ "dim": dim,
104
+ "base": base,
105
+ "max_position_embeddings": max_position_embeddings,
106
+ }
107
+ self.rope_type = rope_type
108
+ self.max_seq_len_cached = max_position_embeddings
109
+ self.original_max_seq_len = max_position_embeddings
110
+ else:
111
+ # BC: "rope_type" was originally "type"
112
+ if config.rope_scaling is not None:
113
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
114
+ else:
115
+ self.rope_type = "default"
116
+ self.max_seq_len_cached = config.max_position_embeddings
117
+ self.original_max_seq_len = config.max_position_embeddings
118
+
119
+ self.config = config
120
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
121
+
122
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
123
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
124
+ self.original_inv_freq = self.inv_freq
125
+
126
+ def reset_parameters(self):
127
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs)
128
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
129
+ self.original_inv_freq = self.inv_freq
130
+
131
+
132
+ def _dynamic_frequency_update(self, position_ids, device):
133
+ """
134
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
135
+ 1 - growing beyond the cached sequence length (allow scaling)
136
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
137
+ """
138
+ seq_len = torch.max(position_ids) + 1
139
+ if seq_len > self.max_seq_len_cached: # growth
140
+ inv_freq, self.attention_scaling = self.rope_init_fn(
141
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
142
+ )
143
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
144
+ self.max_seq_len_cached = seq_len
145
+
146
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
147
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
148
+ self.max_seq_len_cached = self.original_max_seq_len
149
+
150
+ @torch.no_grad()
151
+ def forward(self, x, position_ids):
152
+ if "dynamic" in self.rope_type:
153
+ self._dynamic_frequency_update(position_ids, device=x.device)
154
+
155
+ # Core RoPE block
156
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
157
+ position_ids_expanded = position_ids[:, None, :].float()
158
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
159
+ device_type = x.device.type
160
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
161
+ with torch.autocast(device_type=device_type, enabled=False):
162
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ cos = emb.cos()
165
+ sin = emb.sin()
166
+
167
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
168
+ cos = cos * self.attention_scaling
169
+ sin = sin * self.attention_scaling
170
+
171
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
172
+
173
+
174
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
175
+ def rotate_half(x):
176
+ """Rotates half the hidden dims of the input."""
177
+ x1 = x[..., : x.shape[-1] // 2]
178
+ x2 = x[..., x.shape[-1] // 2 :]
179
+ return torch.cat((-x2, x1), dim=-1)
180
+
181
+
182
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
183
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
184
+ """Applies Rotary Position Embedding to the query and key tensors.
185
+
186
+ Args:
187
+ q (`torch.Tensor`): The query tensor.
188
+ k (`torch.Tensor`): The key tensor.
189
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
190
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
191
+ position_ids (`torch.Tensor`, *optional*):
192
+ Deprecated and unused.
193
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
194
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
195
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
196
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
197
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
198
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
199
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
200
+ Returns:
201
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
202
+ """
203
+ cos = cos.unsqueeze(unsqueeze_dim)
204
+ sin = sin.unsqueeze(unsqueeze_dim)
205
+ q_embed = (q * cos) + (rotate_half(q) * sin)
206
+ k_embed = (k * cos) + (rotate_half(k) * sin)
207
+ return q_embed, k_embed
208
+
209
+
210
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Dream
211
+ class DreamMLP(nn.Module):
212
+ def __init__(self, config):
213
+ super().__init__()
214
+ self.hidden_size = config.hidden_size
215
+ self.intermediate_size = config.intermediate_size
216
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
217
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
218
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
219
+ self.act_fn = ACT2FN[config.hidden_act]
220
+
221
+ def forward(self, hidden_state):
222
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
223
+
224
+
225
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
226
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
227
+ """
228
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
229
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
230
+ """
231
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
232
+ if n_rep == 1:
233
+ return hidden_states
234
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
235
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
236
+
237
+
238
+ class DreamAttention(nn.Module):
239
+ """
240
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
241
+ and "Generating Long Sequences with Sparse Transformers".
242
+ """
243
+
244
+ def __init__(self, config: DreamConfig, layer_idx: Optional[int] = None):
245
+ super().__init__()
246
+ self.config = config
247
+ self.layer_idx = layer_idx
248
+ if layer_idx is None:
249
+ logger.warning_once(
250
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
251
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
252
+ "when creating this class."
253
+ )
254
+
255
+ self.hidden_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+ self.num_key_value_heads = config.num_key_value_heads
259
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
260
+ self.max_position_embeddings = config.max_position_embeddings
261
+ self.rope_theta = config.rope_theta
262
+ self.is_causal = False
263
+ self.attention_dropout = config.attention_dropout
264
+
265
+ if (self.head_dim * self.num_heads) != self.hidden_size:
266
+ raise ValueError(
267
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
268
+ f" and `num_heads`: {self.num_heads})."
269
+ )
270
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
271
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
272
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
273
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
274
+
275
+ self.rotary_emb = DreamRotaryEmbedding(config=self.config)
276
+
277
+ def forward(
278
+ self,
279
+ hidden_states: torch.Tensor,
280
+ attention_mask: Optional[torch.Tensor] = None,
281
+ position_ids: Optional[torch.LongTensor] = None,
282
+ past_key_value: Optional[Cache] = None,
283
+ output_attentions: bool = False,
284
+ use_cache: bool = False,
285
+ cache_position: Optional[torch.LongTensor] = None,
286
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
287
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
288
+ bsz, q_len, _ = hidden_states.size()
289
+
290
+ query_states = self.q_proj(hidden_states)
291
+ key_states = self.k_proj(hidden_states)
292
+ value_states = self.v_proj(hidden_states)
293
+
294
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
295
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
296
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
297
+
298
+ if position_embeddings is None:
299
+ logger.warning_once(
300
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
301
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
302
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
303
+ "removed and `position_embeddings` will be mandatory."
304
+ )
305
+ cos, sin = self.rotary_emb(value_states, position_ids)
306
+ else:
307
+ cos, sin = position_embeddings
308
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
309
+
310
+ if past_key_value is not None:
311
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
312
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
313
+
314
+ # repeat k/v heads if n_kv_heads < n_heads
315
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
316
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
317
+
318
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
319
+ if attention_mask is not None: # no matter the length, we just slice it
320
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
321
+ attn_weights = attn_weights + causal_mask
322
+
323
+ # upcast attention to fp32
324
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
325
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
326
+ attn_output = torch.matmul(attn_weights, value_states)
327
+
328
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
329
+ raise ValueError(
330
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
331
+ f" {attn_output.size()}"
332
+ )
333
+
334
+ attn_output = attn_output.transpose(1, 2).contiguous()
335
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
336
+
337
+ attn_output = self.o_proj(attn_output)
338
+
339
+ if not output_attentions:
340
+ attn_weights = None
341
+
342
+ return attn_output, attn_weights, past_key_value
343
+
344
+
345
+ class DreamSdpaAttention(DreamAttention):
346
+ """
347
+ Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
348
+ `DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
349
+ SDPA API.
350
+ """
351
+
352
+ # Adapted from DreamAttention.forward
353
+ def forward(
354
+ self,
355
+ hidden_states: torch.Tensor,
356
+ attention_mask: Optional[torch.Tensor] = None,
357
+ position_ids: Optional[torch.LongTensor] = None,
358
+ past_key_value: Optional[Cache] = None,
359
+ output_attentions: bool = False,
360
+ use_cache: bool = False,
361
+ cache_position: Optional[torch.LongTensor] = None,
362
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
363
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
364
+ if output_attentions:
365
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
366
+ logger.warning_once(
367
+ "DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
368
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
369
+ )
370
+ return super().forward(
371
+ hidden_states=hidden_states,
372
+ attention_mask=attention_mask,
373
+ position_ids=position_ids,
374
+ past_key_value=past_key_value,
375
+ output_attentions=output_attentions,
376
+ use_cache=use_cache,
377
+ )
378
+
379
+ bsz, q_len, _ = hidden_states.size()
380
+
381
+ query_states = self.q_proj(hidden_states)
382
+ key_states = self.k_proj(hidden_states)
383
+ value_states = self.v_proj(hidden_states)
384
+
385
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
386
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
387
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
388
+
389
+ if position_embeddings is None:
390
+ logger.warning_once(
391
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
392
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
393
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
394
+ "removed and `position_embeddings` will be mandatory."
395
+ )
396
+ cos, sin = self.rotary_emb(value_states, position_ids)
397
+ else:
398
+ cos, sin = position_embeddings
399
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
400
+
401
+ if past_key_value is not None:
402
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
403
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
404
+
405
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
406
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
407
+
408
+ # causal_mask = attention_mask
409
+ # if attention_mask is not None: # no matter the length, we just slice it
410
+ # causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
411
+
412
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
413
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
414
+ if query_states.device.type == "cuda" and attention_mask is not None:
415
+ query_states = query_states.contiguous()
416
+ key_states = key_states.contiguous()
417
+ value_states = value_states.contiguous()
418
+
419
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
420
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
421
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
422
+ # is_causal = True if causal_mask is None and q_len > 1 else False
423
+
424
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
425
+ query_states,
426
+ key_states,
427
+ value_states,
428
+ attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
429
+ dropout_p=self.attention_dropout if self.training else 0.0,
430
+ is_causal=False, # hard coded
431
+ )
432
+
433
+ attn_output = attn_output.transpose(1, 2).contiguous()
434
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
435
+
436
+ attn_output = self.o_proj(attn_output)
437
+
438
+ return attn_output, None, past_key_value
439
+
440
+
441
+ class DreamDecoderLayer(nn.Module):
442
+ def __init__(self, config: DreamConfig, layer_idx: int):
443
+ super().__init__()
444
+ self.hidden_size = config.hidden_size
445
+
446
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
447
+ logger.warning_once(
448
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
449
+ "unexpected results may be encountered."
450
+ )
451
+
452
+ # self.self_attn = Dream_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
453
+ self.self_attn = DreamSdpaAttention(config, layer_idx)
454
+
455
+ self.mlp = DreamMLP(config)
456
+ self.input_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
457
+ self.post_attention_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
458
+
459
+ def forward(
460
+ self,
461
+ hidden_states: torch.Tensor,
462
+ attention_mask: Optional[torch.Tensor] = None,
463
+ position_ids: Optional[torch.LongTensor] = None,
464
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
465
+ output_attentions: Optional[bool] = False,
466
+ use_cache: Optional[bool] = False,
467
+ cache_position: Optional[torch.LongTensor] = None,
468
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
469
+ **kwargs,
470
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
471
+ """
472
+ Args:
473
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
474
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
475
+ `(batch, sequence_length)` where padding elements are indicated by 0.
476
+ output_attentions (`bool`, *optional*):
477
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
478
+ returned tensors for more detail.
479
+ use_cache (`bool`, *optional*):
480
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
481
+ (see `past_key_values`).
482
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
483
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
484
+ Indices depicting the position of the input sequence tokens in the sequence.
485
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
486
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
487
+ with `head_dim` being the embedding dimension of each attention head.
488
+ kwargs (`dict`, *optional*):
489
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
490
+ into the model
491
+ """
492
+
493
+ residual = hidden_states
494
+
495
+ hidden_states = self.input_layernorm(hidden_states)
496
+
497
+ # Self Attention
498
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
499
+ hidden_states=hidden_states,
500
+ attention_mask=attention_mask,
501
+ position_ids=position_ids,
502
+ past_key_value=past_key_value,
503
+ output_attentions=output_attentions,
504
+ use_cache=use_cache,
505
+ cache_position=cache_position,
506
+ position_embeddings=position_embeddings,
507
+ )
508
+ hidden_states = residual + hidden_states
509
+
510
+ # Fully Connected
511
+ residual = hidden_states
512
+ hidden_states = self.post_attention_layernorm(hidden_states)
513
+ hidden_states = self.mlp(hidden_states)
514
+ hidden_states = residual + hidden_states
515
+
516
+ outputs = (hidden_states,)
517
+
518
+ if output_attentions:
519
+ outputs += (self_attn_weights,)
520
+
521
+ if use_cache:
522
+ outputs += (present_key_value,)
523
+
524
+ return outputs
525
+
526
+ class DreamPreTrainedModel(PreTrainedModel):
527
+ config_class = DreamConfig
528
+ base_model_prefix = "model"
529
+ supports_gradient_checkpointing = True
530
+ _no_split_modules = ["DreamDecoderLayer"]
531
+ _skip_keys_device_placement = "past_key_values"
532
+ _supports_flash_attn_2 = True
533
+ _supports_sdpa = True
534
+ _supports_cache_class = True
535
+ _supports_quantized_cache = True
536
+ _supports_static_cache = True
537
+
538
+ def _init_weights(self, module):
539
+ std = self.config.initializer_range
540
+ if isinstance(module, nn.Linear):
541
+ module.weight.data.normal_(mean=0.0, std=std)
542
+ if module.bias is not None:
543
+ module.bias.data.zero_()
544
+ elif isinstance(module, nn.Embedding):
545
+ module.weight.data.normal_(mean=0.0, std=std)
546
+ if module.padding_idx is not None:
547
+ module.weight.data[module.padding_idx].zero_()
548
+
549
+ @classmethod
550
+ def from_pretrained(
551
+ cls,
552
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
553
+ *model_args,
554
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
555
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
556
+ ignore_mismatched_sizes: bool = False,
557
+ force_download: bool = False,
558
+ local_files_only: bool = False,
559
+ token: Optional[Union[str, bool]] = None,
560
+ revision: str = "main",
561
+ use_safetensors: Optional[bool] = None,
562
+ weights_only: bool = True,
563
+ **kwargs,
564
+ ):
565
+ _model = super().from_pretrained(
566
+ pretrained_model_name_or_path,
567
+ *model_args,
568
+ config=config,
569
+ cache_dir=cache_dir,
570
+ ignore_mismatched_sizes=ignore_mismatched_sizes,
571
+ force_download=force_download,
572
+ local_files_only=local_files_only,
573
+ token=token,
574
+ revision=revision,
575
+ use_safetensors=use_safetensors,
576
+ weights_only=weights_only,
577
+ **kwargs,
578
+ )
579
+ # NOTE(Lin): we need to override the generation config
580
+ # because the generation config loaded in `from_pretrained`
581
+ # does not include all the attributes of DreamGenerationConfig
582
+ resume_download = kwargs.get("resume_download", None)
583
+ proxies = kwargs.get("proxies", None)
584
+ subfolder = kwargs.get("subfolder", "")
585
+ from_auto_class = kwargs.get("_from_auto", False)
586
+ from_pipeline = kwargs.get("_from_pipeline", None)
587
+ _model.generation_config = DreamGenerationConfig.from_pretrained(
588
+ pretrained_model_name_or_path,
589
+ cache_dir=cache_dir,
590
+ force_download=force_download,
591
+ resume_download=resume_download,
592
+ proxies=proxies,
593
+ local_files_only=local_files_only,
594
+ token=token,
595
+ revision=revision,
596
+ subfolder=subfolder,
597
+ _from_auto=from_auto_class,
598
+ _from_pipeline=from_pipeline,
599
+ )
600
+ return _model
601
+
602
+ class DreamBaseModel(DreamPreTrainedModel):
603
+ """
604
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DreamDecoderLayer`]
605
+
606
+ Args:
607
+ config: DreamConfig
608
+ """
609
+
610
+ def __init__(self, config: DreamConfig):
611
+ super().__init__(config)
612
+ self.padding_idx = config.pad_token_id
613
+ self.vocab_size = config.vocab_size
614
+
615
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
616
+ self.layers = nn.ModuleList(
617
+ [DreamDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
618
+ )
619
+ self._attn_implementation = config._attn_implementation
620
+ self.norm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
621
+ self.rotary_emb = DreamRotaryEmbedding(config=config)
622
+
623
+ self.gradient_checkpointing = False
624
+ # Initialize weights and apply final processing
625
+ self.post_init()
626
+
627
+ def get_input_embeddings(self):
628
+ return self.embed_tokens
629
+
630
+ def set_input_embeddings(self, value):
631
+ self.embed_tokens = value
632
+
633
+ def forward(
634
+ self,
635
+ input_ids: torch.LongTensor = None,
636
+ attention_mask: Optional[torch.Tensor] = None,
637
+ position_ids: Optional[torch.LongTensor] = None,
638
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
639
+ inputs_embeds: Optional[torch.FloatTensor] = None,
640
+ use_cache: Optional[bool] = None,
641
+ output_attentions: Optional[bool] = None,
642
+ output_hidden_states: Optional[bool] = None,
643
+ return_dict: Optional[bool] = None,
644
+ cache_position: Optional[torch.LongTensor] = None,
645
+ ) -> Union[Tuple, BaseModelOutput]:
646
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
647
+ output_hidden_states = (
648
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
649
+ )
650
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
651
+
652
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
653
+
654
+ if (input_ids is None) ^ (inputs_embeds is not None):
655
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
656
+
657
+ if self.gradient_checkpointing and self.training:
658
+ if use_cache:
659
+ logger.warning_once(
660
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
661
+ )
662
+ use_cache = False
663
+
664
+ if inputs_embeds is None:
665
+ inputs_embeds = self.embed_tokens(input_ids)
666
+
667
+ if use_cache and past_key_values is None:
668
+ past_key_values = DynamicCache()
669
+
670
+ if cache_position is None:
671
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
672
+ cache_position = torch.arange(
673
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
674
+ )
675
+
676
+ if position_ids is None:
677
+ position_ids = cache_position.unsqueeze(0)
678
+
679
+ hidden_states = inputs_embeds
680
+
681
+ # create position embeddings to be shared across the decoder layers
682
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
683
+
684
+ # decoder layers
685
+ all_hidden_states = () if output_hidden_states else None
686
+ all_self_attns = () if output_attentions else None
687
+
688
+ for decoder_layer in self.layers:
689
+ if output_hidden_states:
690
+ all_hidden_states += (hidden_states,)
691
+
692
+ if self.gradient_checkpointing and self.training:
693
+ layer_outputs = self._gradient_checkpointing_func(
694
+ decoder_layer.__call__,
695
+ hidden_states,
696
+ attention_mask,
697
+ position_ids,
698
+ past_key_values,
699
+ output_attentions,
700
+ use_cache,
701
+ cache_position,
702
+ position_embeddings,
703
+ )
704
+ else:
705
+ layer_outputs = decoder_layer(
706
+ hidden_states,
707
+ attention_mask=attention_mask,
708
+ position_ids=position_ids,
709
+ past_key_value=past_key_values,
710
+ output_attentions=output_attentions,
711
+ use_cache=use_cache,
712
+ cache_position=cache_position,
713
+ position_embeddings=position_embeddings,
714
+ )
715
+
716
+ hidden_states = layer_outputs[0]
717
+
718
+ if output_attentions:
719
+ all_self_attns += (layer_outputs[1],)
720
+
721
+ hidden_states = self.norm(hidden_states)
722
+
723
+ # add hidden states from the last decoder layer
724
+ if output_hidden_states:
725
+ all_hidden_states += (hidden_states,)
726
+
727
+ if not return_dict:
728
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None)
729
+ return BaseModelOutput(
730
+ last_hidden_state=hidden_states,
731
+ hidden_states=all_hidden_states,
732
+ attentions=all_self_attns,
733
+ )
734
+
735
+
736
+ class DreamModel(DreamGenerationMixin, DreamPreTrainedModel):
737
+ _tied_weights_keys = ["lm_head.weight"]
738
+
739
+ def __init__(self, config):
740
+ super().__init__(config)
741
+ self.model = DreamBaseModel(config)
742
+ self.vocab_size = config.vocab_size
743
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
744
+
745
+ # Initialize weights and apply final processing
746
+ self.post_init()
747
+
748
+ def reset_rope_parameters(self):
749
+ self.model.rotary_emb.reset_parameters()
750
+ for layer in self.model.layers:
751
+ layer.self_attn.rotary_emb.reset_parameters()
752
+
753
+ def get_input_embeddings(self):
754
+ return self.model.embed_tokens
755
+
756
+ def set_input_embeddings(self, value):
757
+ self.model.embed_tokens = value
758
+
759
+ def get_output_embeddings(self):
760
+ return self.lm_head
761
+
762
+ def set_output_embeddings(self, new_embeddings):
763
+ self.lm_head = new_embeddings
764
+
765
+ def set_decoder(self, decoder):
766
+ self.model = decoder
767
+
768
+ def get_decoder(self):
769
+ return self.model
770
+
771
+ def forward(
772
+ self,
773
+ input_ids: torch.LongTensor = None,
774
+ attention_mask: Optional[torch.Tensor] = None,
775
+ position_ids: Optional[torch.LongTensor] = None,
776
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
777
+ inputs_embeds: Optional[torch.FloatTensor] = None,
778
+ labels: Optional[torch.LongTensor] = None,
779
+ use_cache: Optional[bool] = None,
780
+ output_attentions: Optional[bool] = None,
781
+ output_hidden_states: Optional[bool] = None,
782
+ return_dict: Optional[bool] = None,
783
+ cache_position: Optional[torch.LongTensor] = None,
784
+ num_logits_to_keep: int = 0,
785
+ **loss_kwargs,
786
+ ) -> Union[Tuple, MaskedLMOutput]:
787
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
788
+ output_hidden_states = (
789
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
790
+ )
791
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
792
+
793
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
794
+ outputs = self.model(
795
+ input_ids=input_ids,
796
+ attention_mask=attention_mask,
797
+ position_ids=position_ids,
798
+ past_key_values=past_key_values,
799
+ inputs_embeds=inputs_embeds,
800
+ use_cache=use_cache,
801
+ output_attentions=output_attentions,
802
+ output_hidden_states=output_hidden_states,
803
+ return_dict=return_dict,
804
+ cache_position=cache_position,
805
+ )
806
+
807
+ hidden_states = outputs[0]
808
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
809
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
810
+
811
+ loss = None
812
+ if labels is not None:
813
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
814
+
815
+ if not return_dict:
816
+ output = (logits,) + outputs[1:]
817
+ return (loss,) + output if loss is not None else output
818
+
819
+ return MaskedLMOutput(
820
+ loss=loss,
821
+ logits=logits,
822
+ hidden_states=outputs.hidden_states,
823
+ attentions=outputs.attentions,
824
+ )