File size: 2,201 Bytes
564280d
 
 
 
 
 
 
 
 
bf56aca
 
564280d
 
 
 
a59da1e
564280d
 
 
 
 
 
 
 
 
 
 
 
a59da1e
564280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language: []
license: mit
tags:
  - chest-xray
  - efficientnet-b0
  - medical-ai
  - radiology
  - deep-learning
  - image-classification
library_name: transformers
datasets:
  - nih-chest-xray
  - nlmcxr
model-index:
  - name: rayz_EfficientNet_B0 
    results:
      - task:
          type: image-classification
        dataset:
          name: nih-chest-xray
          type: medical-image
        metrics:
          - name: AUROC Score
            type: accuracy
            value: 0.72 - 0.93
---

# Rayz : AI-Powered Chest X-ray Analysis 

## 🩺 Overview

This model analyzes **chest X-rays** to detect **14 potential lung conditions** using **EfficientNet_B0**, a lightweight yet high-performing CNN. It was trained on **NIH Chest X-ray Dataset & NLMCXR Dataset**, providing reliable multi-class classification for various lung diseases.

### πŸš€ Motivation
This project began when I received a **false-positive tuberculosis (TB) report** and had to wait for **delayed X-ray results** due to a holiday. Not knowing how to interpret X-rays, I **built this AI tool** to **help others in similar situations**.

## πŸ“œ Model Details

- **Model type**: Image Classification (Chest X-ray Analysis)
- **Architecture**: EfficientNet_B0
- **Trained on**: NIH Chest X-ray & NLMCXR Datasets
- **Input format**: Chest X-ray images (`.png`, `.jpg`)
- **Output**: Probabilities for 14 lung conditions
- **License**: MIT
- **Compute Requirement**: Can run on CPU, optimized for **GPU (CUDA)**

## πŸ’‘ Why EfficientNet_B0?
I tested multiple models, including **DenseNet121, ViT, and CNNs**, but **EfficientNet_B0_best_93.44** outperformed the others in terms of:
- **High Accuracy (AUROC: 0.72 - 0.93)**
- **Lower Computational Cost**
- **Faster Inference Speed**
- **Better Generalization across datasets**

## πŸ“Š Model Performance

| Model              | AUROC Score (Avg) |
|--------------------|------------------|
| **EfficientNet_B0** | **0.72 - 0.93** |
| DenseNet121       | 0.55 - 0.95      |
| ViT_Base          | 0.32 - 0.65      |

---

## πŸ”§ How to Use the Model

### **1️⃣ Install Dependencies**
```bash
pip install torch torchvision transformers pillow numpy matplotlib seaborn