--- base_model: Delta-Vector/Francois-PE-V2-Huali-12B datasets: - PocketDoc/Dans-Personamaxx-VN - NewEden/LIMARP-Complexity - NewEden/PIPPA-Mega-Filtered - NewEden/OpenCAI-ShareGPT - NewEden/Creative_Writing-Complexity - NewEden/Light-Novels-Roleplay-Logs-Books-Oh-My-duplicate-turns-removed - PocketDoc/Dans-Failuremaxx-Adventure-3 - NewEden/Books-V2-ShareGPT - NewEden/Deepseek-V3-RP-Filtered - NewEden/BlueSky-10K-Complexity - NewEden/Final-Alpindale-LNs-ShareGPT - NewEden/DeepseekRP-Filtered - NewEden/RP-logs-V2-Experimental - anthracite-org/kalo_opus_misc_240827 - anthracite-org/kalo_misc_part2 - NewEden/vanilla-backrooms-claude-sharegpt - NewEden/Storium-Prefixed-Clean - NewEden/KTO-IF-Dans - NewEden/KTO-Instruct-Mix - NewEden/Opus-accepted-hermes-rejected-shuffled library_name: transformers tags: - fine-tuning - prose - KTO - axolotl - finetune - roleplaying - creative-writing - llama-cpp - gguf-my-repo --- # Disya/Francois-PE-V2-Huali-12B-Q5_K_S-GGUF This model was converted to GGUF format from [`Delta-Vector/Francois-PE-V2-Huali-12B`](https://huggingface.co/Delta-Vector/Francois-PE-V2-Huali-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Delta-Vector/Francois-PE-V2-Huali-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Disya/Francois-PE-V2-Huali-12B-Q5_K_S-GGUF --hf-file francois-pe-v2-huali-12b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Disya/Francois-PE-V2-Huali-12B-Q5_K_S-GGUF --hf-file francois-pe-v2-huali-12b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Disya/Francois-PE-V2-Huali-12B-Q5_K_S-GGUF --hf-file francois-pe-v2-huali-12b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Disya/Francois-PE-V2-Huali-12B-Q5_K_S-GGUF --hf-file francois-pe-v2-huali-12b-q5_k_s.gguf -c 2048 ```