Dhruv11213123
commited on
Commit
·
770499e
1
Parent(s):
db7020c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import plotly.express as px
|
4 |
+
from plotly import graph_objs as go
|
5 |
+
st.title("Demand Trend Analysis")
|
6 |
+
|
7 |
+
df = pd.read_csv("data/cleaned_data.csv",parse_dates=['Order Date'],index_col='Order Date')
|
8 |
+
df_train = df.index< '2018-01-01'
|
9 |
+
|
10 |
+
df_test = df.index>= '2018-01-01'
|
11 |
+
df_train = df[df_train]
|
12 |
+
df_test = df[df_test]
|
13 |
+
time_pred = ["Past","Future"]
|
14 |
+
|
15 |
+
#display the years of data as a slider 2015-2017 for past and 2018 for future
|
16 |
+
|
17 |
+
k = st.sidebar.selectbox("Time",time_pred)
|
18 |
+
if k == "Past":
|
19 |
+
n_years = st.sidebar.slider("Years of data", 2015, 2016, 2017)
|
20 |
+
|
21 |
+
periods = 12*n_years
|
22 |
+
else:
|
23 |
+
n_years = st.sidebar.slider("Years of data", 2018,2019)
|
24 |
+
periods = 12
|
25 |
+
|
26 |
+
@st.cache_data
|
27 |
+
def load_data():
|
28 |
+
data = df.copy()
|
29 |
+
|
30 |
+
return data
|
31 |
+
|
32 |
+
|
33 |
+
data_load_state = st.text("Loading data...")
|
34 |
+
data = load_data()
|
35 |
+
data_load_state.text("Loading data...done!")
|
36 |
+
|
37 |
+
st.subheader("Raw data")
|
38 |
+
st.write(data.head())
|
39 |
+
|
40 |
+
def plot_raw_data_year(input:str):
|
41 |
+
|
42 |
+
|
43 |
+
if input == "Past":
|
44 |
+
|
45 |
+
df_yearly= df_train.groupby(pd.Grouper(freq='Y'))['Sales'].sum()
|
46 |
+
df_yearly = pd.DataFrame(df_yearly)
|
47 |
+
else:
|
48 |
+
df_yearly = df_test.groupby(pd.Grouper(freq='Y'))['Sales'].sum()
|
49 |
+
df_yearly = pd.DataFrame(df_yearly)
|
50 |
+
|
51 |
+
fig = go.Figure()
|
52 |
+
fig.add_trace(go.Bar(x=df_yearly.index, y=df_yearly.Sales,name='Yearly Sales' ,))
|
53 |
+
fig.update_layout(title_text='Yearly Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
|
54 |
+
st.plotly_chart(fig)
|
55 |
+
|
56 |
+
plot_raw_data_year(k)
|
57 |
+
|
58 |
+
|
59 |
+
def plot_raw_data_month(input:str):
|
60 |
+
if input == "Past":
|
61 |
+
df_monthly= df_train.groupby(pd.Grouper(freq='M'))['Sales'].sum()
|
62 |
+
df_monthly = pd.DataFrame(df_monthly)
|
63 |
+
else:
|
64 |
+
df_monthly = df_test.groupby(pd.Grouper(freq='M'))['Sales'].sum()
|
65 |
+
df_monthly = pd.DataFrame(df_monthly)
|
66 |
+
|
67 |
+
fig = go.Figure()
|
68 |
+
fig.add_trace(go.Scatter(x=df_monthly.index, y=df_monthly.Sales,name='Monthly Sales' ))
|
69 |
+
fig.update_layout(title_text= 'Monthly Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
|
70 |
+
st.plotly_chart(fig)
|
71 |
+
|
72 |
+
|
73 |
+
plot_raw_data_month(k)
|
74 |
+
|
75 |
+
|
76 |
+
def plot_raw_data_day(input:str):
|
77 |
+
if input == "Past":
|
78 |
+
df_daily= df_train.groupby(pd.Grouper(freq='D'))['Sales'].sum()
|
79 |
+
df_daily = pd.DataFrame(df_daily)
|
80 |
+
else:
|
81 |
+
df_daily = df_test.groupby(pd.Grouper(freq='D'))['Sales'].sum()
|
82 |
+
df_daily = pd.DataFrame(df_daily)
|
83 |
+
|
84 |
+
fig = go.Figure()
|
85 |
+
fig.add_trace(go.Scatter(x=df_daily.index, y=df_daily.Sales,name='Daily Sales' ))
|
86 |
+
fig.update_layout(title_text= 'Daily Sales',plot_bgcolor='white',xaxis_rangeslider_visible=True)
|
87 |
+
st.plotly_chart(fig)
|
88 |
+
|
89 |
+
plot_raw_data_day(k)
|
90 |
+
|
91 |
+
def plot_raw_yearly_sales_by_segment(input:str):
|
92 |
+
|
93 |
+
if input == "Past":
|
94 |
+
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Segment'])['Sales'].sum().reset_index()
|
95 |
+
|
96 |
+
|
97 |
+
df_yearly_segment = pd.DataFrame(df_yearly_segment)
|
98 |
+
else:
|
99 |
+
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Segment'])['Sales'].sum().reset_index()
|
100 |
+
|
101 |
+
|
102 |
+
df_yearly_segment = pd.DataFrame(df_yearly_segment)
|
103 |
+
color_scale = px.colors.sequential.Viridis
|
104 |
+
|
105 |
+
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
|
106 |
+
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Segment'].unique())}
|
107 |
+
|
108 |
+
# use the color_map dictionary to map the Segment values to colors
|
109 |
+
colors = df_yearly_segment['Segment'].map(color_map)
|
110 |
+
|
111 |
+
# create the plot using plotly.graph_objects
|
112 |
+
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Segment']))
|
113 |
+
fig.update_layout(title_text='Yearly Sales by Segment', plot_bgcolor='white')
|
114 |
+
|
115 |
+
st.plotly_chart(fig)
|
116 |
+
|
117 |
+
|
118 |
+
plot_raw_yearly_sales_by_segment(k)
|
119 |
+
def plot_raw_yearly_sales_by_region(input:str):
|
120 |
+
|
121 |
+
if input == "Past":
|
122 |
+
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Region'])['Sales'].sum().reset_index()
|
123 |
+
|
124 |
+
|
125 |
+
df_yearly_segment = pd.DataFrame(df_yearly_segment)
|
126 |
+
else:
|
127 |
+
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Region'])['Sales'].sum().reset_index()
|
128 |
+
|
129 |
+
|
130 |
+
df_yearly_segment = pd.DataFrame(df_yearly_segment)
|
131 |
+
color_scale = px.colors.sequential.Viridis
|
132 |
+
|
133 |
+
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
|
134 |
+
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Region'].unique())}
|
135 |
+
|
136 |
+
# use the color_map dictionary to map the Segment values to colors
|
137 |
+
colors = df_yearly_segment['Region'].map(color_map)
|
138 |
+
|
139 |
+
# create the plot using plotly.graph_objects
|
140 |
+
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Region']))
|
141 |
+
fig.update_layout(title_text='Yearly Sales by Region', plot_bgcolor='white')
|
142 |
+
st.plotly_chart(fig)
|
143 |
+
|
144 |
+
|
145 |
+
plot_raw_yearly_sales_by_region(k)
|
146 |
+
|
147 |
+
def plot_raw_yearly_sales_by_Category(input:str):
|
148 |
+
|
149 |
+
if input == "Past":
|
150 |
+
df_yearly_segment = df_train.groupby([pd.Grouper(freq='Y'), 'Category'])['Sales'].sum().reset_index()
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
else:
|
155 |
+
df_yearly_segment = df_test.groupby([pd.Grouper(freq='Y'), 'Category'])['Sales'].sum().reset_index()
|
156 |
+
|
157 |
+
|
158 |
+
df_yearly_segment = pd.DataFrame(df_yearly_segment)
|
159 |
+
color_scale = px.colors.sequential.Viridis
|
160 |
+
|
161 |
+
# create a dictionary that maps each unique value in the Segment column to a color from the color scheme
|
162 |
+
color_map = {segment: color_scale[i % len(color_scale)] for i, segment in enumerate(df_yearly_segment['Category'].unique())}
|
163 |
+
|
164 |
+
# use the color_map dictionary to map the Segment values to colors
|
165 |
+
colors = df_yearly_segment['Category'].map(color_map)
|
166 |
+
|
167 |
+
# create the plot using plotly.graph_objects
|
168 |
+
fig = go.Figure(data=go.Bar(x=df_yearly_segment['Order Date'], y=df_yearly_segment['Sales'], marker={'color': colors},hovertext=df_yearly_segment['Category']))
|
169 |
+
fig.update_layout(title_text='Yearly Sales by Category', plot_bgcolor='white')
|
170 |
+
st.plotly_chart(fig)
|
171 |
+
|
172 |
+
plot_raw_yearly_sales_by_Category(k)
|
173 |
+
|
174 |
+
def plot_raw_yearly_sales_by_State(input:str, number:int):
|
175 |
+
|
176 |
+
if input == "Past":
|
177 |
+
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'State'])['Sales'].sum().reset_index()
|
178 |
+
else:
|
179 |
+
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'State'])['Sales'].sum().reset_index()
|
180 |
+
|
181 |
+
df_yearly_state = pd.DataFrame(df_yearly_state)
|
182 |
+
color_scale = px.colors.sequential.Viridis
|
183 |
+
topN_states = df_yearly_state.groupby('State').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
|
184 |
+
top_states_df = df_yearly_state[df_yearly_state['State'].isin(topN_states)]
|
185 |
+
|
186 |
+
# create a dictionary that maps each unique value in the State column to a color from the color scheme
|
187 |
+
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['State'].unique())}
|
188 |
+
|
189 |
+
# use the color_map dictionary to map the State values to colors
|
190 |
+
colors = top_states_df['State'].map(color_map)
|
191 |
+
|
192 |
+
# create the plot using plotly.graph_objects
|
193 |
+
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['Sales'], marker={'color': colors},hovertext=top_states_df['State']))
|
194 |
+
fig.update_layout(title_text=f'Top {number} states with highest sales', plot_bgcolor='white')
|
195 |
+
st.plotly_chart(fig)
|
196 |
+
|
197 |
+
|
198 |
+
# initialize Streamlit slider for selecting number of subcategories to display
|
199 |
+
number_st = st.slider('Select the number of States', 1, 10, 3)
|
200 |
+
|
201 |
+
plot_raw_yearly_sales_by_State(k,number_st)
|
202 |
+
|
203 |
+
def plot_raw_yearly_sales_by_Sub_Cat(input:str, number:int):
|
204 |
+
|
205 |
+
if input == "Past":
|
206 |
+
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'Sub-Category'])['Sales'].sum().reset_index()
|
207 |
+
else:
|
208 |
+
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'Sub-Category'])['Sales'].sum().reset_index()
|
209 |
+
|
210 |
+
df_yearly_state = pd.DataFrame(df_yearly_state)
|
211 |
+
color_scale = px.colors.sequential.Viridis
|
212 |
+
topN_states = df_yearly_state.groupby('Sub-Category').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
|
213 |
+
top_states_df = df_yearly_state[df_yearly_state['Sub-Category'].isin(topN_states)]
|
214 |
+
|
215 |
+
# create a dictionary that maps each unique value in the State column to a color from the color scheme
|
216 |
+
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['Sub-Category'].unique())}
|
217 |
+
|
218 |
+
# use the color_map dictionary to map the State values to colors
|
219 |
+
colors = top_states_df['Sub-Category'].map(color_map)
|
220 |
+
|
221 |
+
# create the plot using plotly.graph_objects
|
222 |
+
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['Sub-Category'], marker={'color': colors},hovertext=top_states_df['Sub-Category']))
|
223 |
+
fig.update_layout(title_text=f'Top {number} sub categories with highest sales', plot_bgcolor='white')
|
224 |
+
st.plotly_chart(fig)
|
225 |
+
|
226 |
+
|
227 |
+
# initialize Streamlit slider for selecting number of subcategories to display
|
228 |
+
number_sub_cat = st.slider('Select the number of Sub-Category', 1, 10, 3)
|
229 |
+
|
230 |
+
plot_raw_yearly_sales_by_Sub_Cat(k,number_sub_cat)
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
def plot_raw_yearly_sales_by_Product(input:str,number:int):
|
237 |
+
|
238 |
+
if input == "Past":
|
239 |
+
df_yearly_product = df_train.groupby([pd.Grouper(freq='Y'), 'Product Name'])['Sales'].sum().reset_index()
|
240 |
+
else:
|
241 |
+
df_yearly_product = df_test.groupby([pd.Grouper(freq='Y'), 'Product Name'])['Sales'].sum().reset_index()
|
242 |
+
|
243 |
+
df_yearly_product = pd.DataFrame(df_yearly_product)
|
244 |
+
color_scale = px.colors.sequential.Viridis
|
245 |
+
topN_products = df_yearly_product.groupby('Product Name').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
|
246 |
+
top_product_df = df_yearly_product[df_yearly_product['Product Name'].isin(topN_products)]
|
247 |
+
|
248 |
+
# create a dictionary that maps each unique value in the Product Name column to a color from the color scheme
|
249 |
+
color_map = {product: color_scale[i % len(color_scale)] for i, product in enumerate(top_product_df['Product Name'].unique())}
|
250 |
+
|
251 |
+
# use the color_map dictionary to map the Product Name values to colors
|
252 |
+
colors = top_product_df['Product Name'].map(color_map)
|
253 |
+
|
254 |
+
# create the plot using plotly.graph_objects
|
255 |
+
fig = go.Figure(data=go.Bar(x=top_product_df['Order Date'], y=top_product_df['Sales'], marker={'color': colors},hovertext=top_product_df['Product Name']))
|
256 |
+
fig.update_layout(title_text=f'Top {number} best-selling products', plot_bgcolor='white')
|
257 |
+
st.plotly_chart(fig)
|
258 |
+
|
259 |
+
# initialize Streamlit slider for selecting number of products to display
|
260 |
+
number_p = st.slider('Select the number of products to display', 1, 10, 3)
|
261 |
+
plot_raw_yearly_sales_by_Product(k,number_p)
|
262 |
+
|
263 |
+
|
264 |
+
def plot_raw_yearly_sales_by_City(input:str, number:int):
|
265 |
+
|
266 |
+
if input == "Past":
|
267 |
+
df_yearly_state = df_train.groupby([pd.Grouper(freq='Y'), 'City'])['Sales'].sum().reset_index()
|
268 |
+
else:
|
269 |
+
df_yearly_state = df_test.groupby([pd.Grouper(freq='Y'), 'City'])['Sales'].sum().reset_index()
|
270 |
+
|
271 |
+
df_yearly_state = pd.DataFrame(df_yearly_state)
|
272 |
+
color_scale = px.colors.sequential.Viridis
|
273 |
+
topN_states = df_yearly_state.groupby('City').sum().sort_values('Sales', ascending=False).head(number).index.tolist()
|
274 |
+
top_states_df = df_yearly_state[df_yearly_state['City'].isin(topN_states)]
|
275 |
+
|
276 |
+
# create a dictionary that maps each unique value in the State column to a color from the color scheme
|
277 |
+
color_map = {state: color_scale[i % len(color_scale)] for i, state in enumerate(top_states_df['City'].unique())}
|
278 |
+
|
279 |
+
# use the color_map dictionary to map the State values to colors
|
280 |
+
colors = top_states_df['City'].map(color_map)
|
281 |
+
|
282 |
+
# create the plot using plotly.graph_objects
|
283 |
+
fig = go.Figure(data=go.Bar(x=top_states_df['Order Date'], y=top_states_df['City'], marker={'color': colors},hovertext=top_states_df['City']))
|
284 |
+
fig.update_layout(title_text=f'Top {number} states with highest sales', plot_bgcolor='white')
|
285 |
+
st.plotly_chart(fig)
|
286 |
+
|
287 |
+
|
288 |
+
# initialize Streamlit slider for selecting number of subcategories to display
|
289 |
+
number_city = st.slider('Select the number of Cities', 1, 10, 3)
|
290 |
+
|
291 |
+
plot_raw_yearly_sales_by_City(k,number_city)
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|