csabakecskemeti
commited on
Upload 6 files
Browse files- README.md +322 -7
- README_WEIGHTS.md +94 -0
- config.json +70 -0
- modeling_deepseek.py +1849 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
README.md
CHANGED
@@ -1,13 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
|
|
|
1 |
+
<!-- markdownlint-disable first-line-h1 -->
|
2 |
+
<!-- markdownlint-disable html -->
|
3 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
7 |
+
</div>
|
8 |
+
<hr>
|
9 |
+
<div align="center" style="line-height: 1;">
|
10 |
+
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
11 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
12 |
+
</a>
|
13 |
+
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
14 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
15 |
+
</a>
|
16 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
17 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
18 |
+
</a>
|
19 |
+
</div>
|
20 |
+
|
21 |
+
<div align="center" style="line-height: 1;">
|
22 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
23 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
24 |
+
</a>
|
25 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
26 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
27 |
+
</a>
|
28 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
29 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
30 |
+
</a>
|
31 |
+
</div>
|
32 |
+
|
33 |
+
<div align="center" style="line-height: 1;">
|
34 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-CODE" style="margin: 2px;">
|
35 |
+
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
36 |
+
</a>
|
37 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL" style="margin: 2px;">
|
38 |
+
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
39 |
+
</a>
|
40 |
+
</div>
|
41 |
+
|
42 |
+
|
43 |
+
<p align="center">
|
44 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf"><b>Paper Link</b>👁️</a>
|
45 |
+
</p>
|
46 |
+
|
47 |
+
|
48 |
+
## 1. Introduction
|
49 |
+
|
50 |
+
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.
|
51 |
+
To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2.
|
52 |
+
Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance.
|
53 |
+
We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities.
|
54 |
+
Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models.
|
55 |
+
Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training.
|
56 |
+
In addition, its training process is remarkably stable.
|
57 |
+
Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
|
58 |
+
<p align="center">
|
59 |
+
<img width="80%" src="figures/benchmark.png">
|
60 |
+
</p>
|
61 |
+
|
62 |
+
## 2. Model Summary
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
**Architecture: Innovative Load Balancing Strategy and Training Objective**
|
67 |
+
|
68 |
+
- On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing.
|
69 |
+
- We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance.
|
70 |
+
It can also be used for speculative decoding for inference acceleration.
|
71 |
+
|
72 |
---
|
73 |
+
|
74 |
+
**Pre-Training: Towards Ultimate Training Efficiency**
|
75 |
+
|
76 |
+
- We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model.
|
77 |
+
- Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap.
|
78 |
+
This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead.
|
79 |
+
- At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours.
|
80 |
+
|
81 |
---
|
82 |
|
83 |
+
**Post-Training: Knowledge Distillation from DeepSeek-R1**
|
84 |
+
|
85 |
+
- We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3.
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
|
90 |
+
## 3. Model Downloads
|
91 |
+
|
92 |
+
<div align="center">
|
93 |
+
|
94 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
|
95 |
+
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
96 |
+
| DeepSeek-V3-Base | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base) |
|
97 |
+
| DeepSeek-V3 | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3) |
|
98 |
+
|
99 |
+
</div>
|
100 |
+
|
101 |
+
**NOTE: The total size of DeepSeek-V3 models on HuggingFace is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights.**
|
102 |
+
|
103 |
+
To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: [How_to Run_Locally](#6-how-to-run-locally).
|
104 |
+
|
105 |
+
For developers looking to dive deeper, we recommend exploring [README_WEIGHTS.md](./README_WEIGHTS.md) for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback.
|
106 |
+
|
107 |
+
## 4. Evaluation Results
|
108 |
+
### Base Model
|
109 |
+
#### Standard Benchmarks
|
110 |
+
|
111 |
+
<div align="center">
|
112 |
+
|
113 |
+
|
114 |
+
| | Benchmark (Metric) | # Shots | DeepSeek-V2 | Qwen2.5 72B | LLaMA3.1 405B | DeepSeek-V3 |
|
115 |
+
|---|-------------------|----------|--------|-------------|---------------|---------|
|
116 |
+
| | Architecture | - | MoE | Dense | Dense | MoE |
|
117 |
+
| | # Activated Params | - | 21B | 72B | 405B | 37B |
|
118 |
+
| | # Total Params | - | 236B | 72B | 405B | 671B |
|
119 |
+
| English | Pile-test (BPB) | - | 0.606 | 0.638 | **0.542** | 0.548 |
|
120 |
+
| | BBH (EM) | 3-shot | 78.8 | 79.8 | 82.9 | **87.5** |
|
121 |
+
| | MMLU (Acc.) | 5-shot | 78.4 | 85.0 | 84.4 | **87.1** |
|
122 |
+
| | MMLU-Redux (Acc.) | 5-shot | 75.6 | 83.2 | 81.3 | **86.2** |
|
123 |
+
| | MMLU-Pro (Acc.) | 5-shot | 51.4 | 58.3 | 52.8 | **64.4** |
|
124 |
+
| | DROP (F1) | 3-shot | 80.4 | 80.6 | 86.0 | **89.0** |
|
125 |
+
| | ARC-Easy (Acc.) | 25-shot | 97.6 | 98.4 | 98.4 | **98.9** |
|
126 |
+
| | ARC-Challenge (Acc.) | 25-shot | 92.2 | 94.5 | **95.3** | **95.3** |
|
127 |
+
| | HellaSwag (Acc.) | 10-shot | 87.1 | 84.8 | **89.2** | 88.9 |
|
128 |
+
| | PIQA (Acc.) | 0-shot | 83.9 | 82.6 | **85.9** | 84.7 |
|
129 |
+
| | WinoGrande (Acc.) | 5-shot | **86.3** | 82.3 | 85.2 | 84.9 |
|
130 |
+
| | RACE-Middle (Acc.) | 5-shot | 73.1 | 68.1 | **74.2** | 67.1 |
|
131 |
+
| | RACE-High (Acc.) | 5-shot | 52.6 | 50.3 | **56.8** | 51.3 |
|
132 |
+
| | TriviaQA (EM) | 5-shot | 80.0 | 71.9 | **82.7** | **82.9** |
|
133 |
+
| | NaturalQuestions (EM) | 5-shot | 38.6 | 33.2 | **41.5** | 40.0 |
|
134 |
+
| | AGIEval (Acc.) | 0-shot | 57.5 | 75.8 | 60.6 | **79.6** |
|
135 |
+
| Code | HumanEval (Pass@1) | 0-shot | 43.3 | 53.0 | 54.9 | **65.2** |
|
136 |
+
| | MBPP (Pass@1) | 3-shot | 65.0 | 72.6 | 68.4 | **75.4** |
|
137 |
+
| | LiveCodeBench-Base (Pass@1) | 3-shot | 11.6 | 12.9 | 15.5 | **19.4** |
|
138 |
+
| | CRUXEval-I (Acc.) | 2-shot | 52.5 | 59.1 | 58.5 | **67.3** |
|
139 |
+
| | CRUXEval-O (Acc.) | 2-shot | 49.8 | 59.9 | 59.9 | **69.8** |
|
140 |
+
| Math | GSM8K (EM) | 8-shot | 81.6 | 88.3 | 83.5 | **89.3** |
|
141 |
+
| | MATH (EM) | 4-shot | 43.4 | 54.4 | 49.0 | **61.6** |
|
142 |
+
| | MGSM (EM) | 8-shot | 63.6 | 76.2 | 69.9 | **79.8** |
|
143 |
+
| | CMath (EM) | 3-shot | 78.7 | 84.5 | 77.3 | **90.7** |
|
144 |
+
| Chinese | CLUEWSC (EM) | 5-shot | 82.0 | 82.5 | **83.0** | 82.7 |
|
145 |
+
| | C-Eval (Acc.) | 5-shot | 81.4 | 89.2 | 72.5 | **90.1** |
|
146 |
+
| | CMMLU (Acc.) | 5-shot | 84.0 | **89.5** | 73.7 | 88.8 |
|
147 |
+
| | CMRC (EM) | 1-shot | **77.4** | 75.8 | 76.0 | 76.3 |
|
148 |
+
| | C3 (Acc.) | 0-shot | 77.4 | 76.7 | **79.7** | 78.6 |
|
149 |
+
| | CCPM (Acc.) | 0-shot | **93.0** | 88.5 | 78.6 | 92.0 |
|
150 |
+
| Multilingual | MMMLU-non-English (Acc.) | 5-shot | 64.0 | 74.8 | 73.8 | **79.4** |
|
151 |
+
|
152 |
+
</div>
|
153 |
+
|
154 |
+
Note: Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks.
|
155 |
+
For more evaluation details, please check our paper.
|
156 |
+
|
157 |
+
#### Context Window
|
158 |
+
<p align="center">
|
159 |
+
<img width="80%" src="figures/niah.png">
|
160 |
+
</p>
|
161 |
+
|
162 |
+
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to **128K**.
|
163 |
+
|
164 |
+
### Chat Model
|
165 |
+
#### Standard Benchmarks (Models larger than 67B)
|
166 |
+
<div align="center">
|
167 |
+
|
168 |
+
| | **Benchmark (Metric)** | **DeepSeek V2-0506** | **DeepSeek V2.5-0905** | **Qwen2.5 72B-Inst.** | **Llama3.1 405B-Inst.** | **Claude-3.5-Sonnet-1022** | **GPT-4o 0513** | **DeepSeek V3** |
|
169 |
+
|---|---------------------|---------------------|----------------------|---------------------|----------------------|---------------------------|----------------|----------------|
|
170 |
+
| | Architecture | MoE | MoE | Dense | Dense | - | - | MoE |
|
171 |
+
| | # Activated Params | 21B | 21B | 72B | 405B | - | - | 37B |
|
172 |
+
| | # Total Params | 236B | 236B | 72B | 405B | - | - | 671B |
|
173 |
+
| English | MMLU (EM) | 78.2 | 80.6 | 85.3 | **88.6** | **88.3** | 87.2 | **88.5** |
|
174 |
+
| | MMLU-Redux (EM) | 77.9 | 80.3 | 85.6 | 86.2 | **88.9** | 88.0 | **89.1** |
|
175 |
+
| | MMLU-Pro (EM) | 58.5 | 66.2 | 71.6 | 73.3 | **78.0** | 72.6 | 75.9 |
|
176 |
+
| | DROP (3-shot F1) | 83.0 | 87.8 | 76.7 | 88.7 | 88.3 | 83.7 | **91.6** |
|
177 |
+
| | IF-Eval (Prompt Strict) | 57.7 | 80.6 | 84.1 | 86.0 | **86.5** | 84.3 | 86.1 |
|
178 |
+
| | GPQA-Diamond (Pass@1) | 35.3 | 41.3 | 49.0 | 51.1 | **65.0** | 49.9 | 59.1 |
|
179 |
+
| | SimpleQA (Correct) | 9.0 | 10.2 | 9.1 | 17.1 | 28.4 | **38.2** | 24.9 |
|
180 |
+
| | FRAMES (Acc.) | 66.9 | 65.4 | 69.8 | 70.0 | 72.5 | **80.5** | 73.3 |
|
181 |
+
| | LongBench v2 (Acc.) | 31.6 | 35.4 | 39.4 | 36.1 | 41.0 | 48.1 | **48.7** |
|
182 |
+
| Code | HumanEval-Mul (Pass@1) | 69.3 | 77.4 | 77.3 | 77.2 | 81.7 | 80.5 | **82.6** |
|
183 |
+
| | LiveCodeBench (Pass@1-COT) | 18.8 | 29.2 | 31.1 | 28.4 | 36.3 | 33.4 | **40.5** |
|
184 |
+
| | LiveCodeBench (Pass@1) | 20.3 | 28.4 | 28.7 | 30.1 | 32.8 | 34.2 | **37.6** |
|
185 |
+
| | Codeforces (Percentile) | 17.5 | 35.6 | 24.8 | 25.3 | 20.3 | 23.6 | **51.6** |
|
186 |
+
| | SWE Verified (Resolved) | - | 22.6 | 23.8 | 24.5 | **50.8** | 38.8 | 42.0 |
|
187 |
+
| | Aider-Edit (Acc.) | 60.3 | 71.6 | 65.4 | 63.9 | **84.2** | 72.9 | 79.7 |
|
188 |
+
| | Aider-Polyglot (Acc.) | - | 18.2 | 7.6 | 5.8 | 45.3 | 16.0 | **49.6** |
|
189 |
+
| Math | AIME 2024 (Pass@1) | 4.6 | 16.7 | 23.3 | 23.3 | 16.0 | 9.3 | **39.2** |
|
190 |
+
| | MATH-500 (EM) | 56.3 | 74.7 | 80.0 | 73.8 | 78.3 | 74.6 | **90.2** |
|
191 |
+
| | CNMO 2024 (Pass@1) | 2.8 | 10.8 | 15.9 | 6.8 | 13.1 | 10.8 | **43.2** |
|
192 |
+
| Chinese | CLUEWSC (EM) | 89.9 | 90.4 | **91.4** | 84.7 | 85.4 | 87.9 | 90.9 |
|
193 |
+
| | C-Eval (EM) | 78.6 | 79.5 | 86.1 | 61.5 | 76.7 | 76.0 | **86.5** |
|
194 |
+
| | C-SimpleQA (Correct) | 48.5 | 54.1 | 48.4 | 50.4 | 51.3 | 59.3 | **64.8** |
|
195 |
+
|
196 |
+
Note: All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models.
|
197 |
+
|
198 |
+
</div>
|
199 |
+
|
200 |
+
|
201 |
+
#### Open Ended Generation Evaluation
|
202 |
+
|
203 |
+
<div align="center">
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
| Model | Arena-Hard | AlpacaEval 2.0 |
|
208 |
+
|-------|------------|----------------|
|
209 |
+
| DeepSeek-V2.5-0905 | 76.2 | 50.5 |
|
210 |
+
| Qwen2.5-72B-Instruct | 81.2 | 49.1 |
|
211 |
+
| LLaMA-3.1 405B | 69.3 | 40.5 |
|
212 |
+
| GPT-4o-0513 | 80.4 | 51.1 |
|
213 |
+
| Claude-Sonnet-3.5-1022 | 85.2 | 52.0 |
|
214 |
+
| DeepSeek-V3 | **85.5** | **70.0** |
|
215 |
+
|
216 |
+
Note: English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric.
|
217 |
+
</div>
|
218 |
+
|
219 |
+
|
220 |
+
## 5. Chat Website & API Platform
|
221 |
+
You can chat with DeepSeek-V3 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
|
222 |
+
|
223 |
+
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
|
224 |
+
|
225 |
+
## 6. How to Run Locally
|
226 |
+
|
227 |
+
DeepSeek-V3 can be deployed locally using the following hardware and open-source community software:
|
228 |
+
|
229 |
+
1. **DeepSeek-Infer Demo**: We provide a simple and lightweight demo for FP8 and BF16 inference.
|
230 |
+
2. **SGLang**: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes.
|
231 |
+
3. **LMDeploy**: Enables efficient FP8 and BF16 inference for local and cloud deployment.
|
232 |
+
4. **TensorRT-LLM**: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon.
|
233 |
+
5. **vLLM**: Support DeekSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism.
|
234 |
+
6. **AMD GPU**: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes.
|
235 |
+
7. **Huawei Ascend NPU**: Supports running DeepSeek-V3 on Huawei Ascend devices.
|
236 |
+
|
237 |
+
Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation.
|
238 |
+
|
239 |
+
Here is an example of converting FP8 weights to BF16:
|
240 |
+
|
241 |
+
```shell
|
242 |
+
cd inference
|
243 |
+
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights
|
244 |
+
```
|
245 |
+
|
246 |
+
**NOTE: Huggingface's Transformers has not been directly supported yet.**
|
247 |
+
|
248 |
+
### 6.1 Inference with DeepSeek-Infer Demo (example only)
|
249 |
+
|
250 |
+
#### Model Weights & Demo Code Preparation
|
251 |
+
|
252 |
+
First, clone our DeepSeek-V3 GitHub repository:
|
253 |
+
|
254 |
+
```shell
|
255 |
+
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
|
256 |
+
```
|
257 |
+
|
258 |
+
Navigate to the `inference` folder and install dependencies listed in `requirements.txt`.
|
259 |
+
|
260 |
+
```shell
|
261 |
+
cd DeepSeek-V3/inference
|
262 |
+
pip install -r requirements.txt
|
263 |
+
```
|
264 |
+
|
265 |
+
Download the model weights from HuggingFace, and put them into `/path/to/DeepSeek-V3` folder.
|
266 |
+
|
267 |
+
#### Model Weights Conversion
|
268 |
+
|
269 |
+
Convert HuggingFace model weights to a specific format:
|
270 |
+
|
271 |
+
```shell
|
272 |
+
python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16
|
273 |
+
```
|
274 |
+
|
275 |
+
#### Run
|
276 |
+
|
277 |
+
Then you can chat with DeepSeek-V3:
|
278 |
+
|
279 |
+
```shell
|
280 |
+
torchrun --nnodes 2 --nproc-per-node 8 generate.py --node-rank $RANK --master-addr $ADDR --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200
|
281 |
+
```
|
282 |
+
|
283 |
+
Or batch inference on a given file:
|
284 |
+
|
285 |
+
```shell
|
286 |
+
torchrun --nnodes 2 --nproc-per-node 8 generate.py --node-rank $RANK --master-addr $ADDR --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE
|
287 |
+
```
|
288 |
+
|
289 |
+
### 6.2 Inference with SGLang (recommended)
|
290 |
+
|
291 |
+
[SGLang](https://github.com/sgl-project/sglang) currently supports MLA optimizations, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks.
|
292 |
+
|
293 |
+
Notably, [SGLang v0.4.1](https://github.com/sgl-project/sglang/releases/tag/v0.4.1) fully supports running DeepSeek-V3 on both **NVIDIA and AMD GPUs**, making it a highly versatile and robust solution.
|
294 |
+
|
295 |
+
Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3
|
296 |
+
|
297 |
+
### 6.3 Inference with LMDeploy (recommended)
|
298 |
+
[LMDeploy](https://github.com/InternLM/lmdeploy), a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows.
|
299 |
+
|
300 |
+
For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: https://github.com/InternLM/lmdeploy/issues/2960
|
301 |
+
|
302 |
+
|
303 |
+
### 6.4 Inference with TRT-LLM (recommended)
|
304 |
+
|
305 |
+
[TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/deepseek/examples/deepseek_v3.
|
306 |
+
|
307 |
+
### 6.5 Inference with vLLM (recommended)
|
308 |
+
|
309 |
+
[vLLM](https://github.com/vllm-project/vllm) v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers _pipeline parallelism_ allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the [vLLM instructions](https://docs.vllm.ai/en/latest/serving/distributed_serving.html). Please feel free to follow [the enhancement plan](https://github.com/vllm-project/vllm/issues/11539) as well.
|
310 |
+
|
311 |
+
### 6.6 Recommended Inference Functionality with AMD GPUs
|
312 |
+
|
313 |
+
In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the [SGLang instructions](#63-inference-with-lmdeploy-recommended).
|
314 |
+
|
315 |
+
### 6.7 Recommended Inference Functionality with Huawei Ascend NPUs
|
316 |
+
The [MindIE](https://www.hiascend.com/en/software/mindie) framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the [instructions here](https://modelers.cn/models/MindIE/deepseekv3).
|
317 |
+
|
318 |
+
|
319 |
+
## 7. License
|
320 |
+
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V3 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V3 series (including Base and Chat) supports commercial use.
|
321 |
|
322 |
+
## 8. Citation
|
323 |
+
```
|
324 |
|
325 |
+
```
|
326 |
|
327 |
+
## 9. Contact
|
328 |
+
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
README_WEIGHTS.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DeepSeek-V3 Weight File Documentation
|
2 |
+
|
3 |
+
## New Fields in `config.json`
|
4 |
+
|
5 |
+
- **model_type**: Specifies the model type, which is updated to `deepseek_v3` in this release.
|
6 |
+
- **num_nextn_predict_layers**: Indicates the number of Multi-Token Prediction (MTP) Modules. The open-sourced V3 weights include **1 MTP Module** .
|
7 |
+
- **quantization_config**: Describes the configuration for FP8 quantization.
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
## Weight Structure Overview
|
12 |
+
|
13 |
+
The DeepSeek-V3 weight file consists of two main components: **Main Model Weights** and **MTP Modules**.
|
14 |
+
|
15 |
+
### 1. Main Model Weights
|
16 |
+
|
17 |
+
- **Composition**:
|
18 |
+
- Input/output embedding layers and a complete set of 61 Transformer hidden layers.
|
19 |
+
- **Parameter Count**:
|
20 |
+
- Total parameters: **671B**
|
21 |
+
- Activation parameters: **36.7B** (including 0.9B for Embedding and 0.9B for the output Head).
|
22 |
+
|
23 |
+
#### Structural Details
|
24 |
+
|
25 |
+
- **Embedding Layer**:
|
26 |
+
- `model.embed_tokens.weight`
|
27 |
+
- **Transformer Hidden Layers**:
|
28 |
+
- `model.layers.0` to `model.layers.60`, totaling `num_hidden_layers` layers.
|
29 |
+
- **Output Layer**:
|
30 |
+
- `model.norm.weight`
|
31 |
+
- `lm_head.weight`
|
32 |
+
|
33 |
+
### 2. Multi-Token Prediction (MTP) Modules
|
34 |
+
|
35 |
+
- **Composition**:
|
36 |
+
- Additional MTP Modules defined by the `num_nextn_predict_layers` field. In this model, the value is set to 1.
|
37 |
+
- **Parameter Count**:
|
38 |
+
- Parameters: **11.5B unique parameters**, excluding the shared 0.9B Embedding and 0.9B output Head).
|
39 |
+
- Activation parameters: **2.4B** (including the shared 0.9B Embedding and 0.9B output Head).
|
40 |
+
|
41 |
+
#### Structural Details
|
42 |
+
|
43 |
+
- **embed_tokens**: **Shares parameters** with the Embedding layer of the Main Model weights.
|
44 |
+
- **enorm & hnorm**: RMSNorm parameters required for speculative decoding.
|
45 |
+
- **eh_proj**: Parameters for dimensionality reduction projection on the norm results.
|
46 |
+
- **Additional Transformer Hidden Layer**:
|
47 |
+
- `model.layers.61.self_attn & mlp` (structure identical to the Main Model hidden layers).
|
48 |
+
- **shared_head**: **Shares parameters** with the output Head of the Main Model weights.
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
### Loading Rules
|
53 |
+
|
54 |
+
- **Main Model Weights**: Loaded via the `num_hidden_layers` parameter in `config.json`.
|
55 |
+
- **MTP Modules**: Loaded via the `num_nextn_predict_layers` parameter, with layer IDs appended immediately after the Main Model hidden layers. For example:
|
56 |
+
- If `num_hidden_layers = 61` and `num_nextn_predict_layers = 1`, the MTP Module's layer ID is `61`.
|
57 |
+
|
58 |
+
---
|
59 |
+
|
60 |
+
## FP8 Weight Documentation
|
61 |
+
|
62 |
+
DeepSeek-V3 natively supports FP8 weight format with 128x128 block scaling.
|
63 |
+
|
64 |
+
### FP8 Configuration
|
65 |
+
|
66 |
+
The FP8 weight file introduces a `quantization_config` field to describe the quantization method. Below is an example configuration:
|
67 |
+
|
68 |
+
```json
|
69 |
+
"quantization_config": {
|
70 |
+
"activation_scheme": "dynamic",
|
71 |
+
"fmt": "e4m3",
|
72 |
+
"quant_method": "fp8",
|
73 |
+
"weight_block_size": [128, 128]
|
74 |
+
}
|
75 |
+
```
|
76 |
+
|
77 |
+
- **Quantization Format**:
|
78 |
+
- Format type: `fp8` and `e4m3` (corresponding to `torch.float8_e4m3fn`).
|
79 |
+
- Weight block size: `128x128`.
|
80 |
+
- **Activation Quantization Scheme**:
|
81 |
+
- Utilizes dynamic activation quantization (`dynamic`).
|
82 |
+
|
83 |
+
### Dequantization Method
|
84 |
+
|
85 |
+
The FP8 weight file includes a `weight_scale_inv` field, which stores the dequantization scale for each weight block.
|
86 |
+
|
87 |
+
- **Storage Format**: `float32 Tensor`, stored alongside the weight data.
|
88 |
+
- **Dequantization Formula**:
|
89 |
+
- If the weight block is not aligned to 128, it is zero-padded to 128 before calculating the scale. After quantization, the padded portion is removed.
|
90 |
+
- The dequantization process is performed as: `(128x128 weight block) * weight_scale_inv`.
|
91 |
+
|
92 |
+
Through dequantization of the FP8 weights, runtime operations enable online quantization at a granularity of `per-token-per-128-channel`.
|
93 |
+
|
94 |
+
---
|
config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeepseekV3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_deepseek.DeepseekV3Config",
|
9 |
+
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
10 |
+
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
11 |
+
},
|
12 |
+
"aux_loss_alpha": 0.001,
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"eos_token_id": 1,
|
15 |
+
"ep_size": 1,
|
16 |
+
"first_k_dense_replace": 3,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 7168,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 18432,
|
21 |
+
"kv_lora_rank": 512,
|
22 |
+
"max_position_embeddings": 163840,
|
23 |
+
"model_type": "deepseek_v3",
|
24 |
+
"moe_intermediate_size": 2048,
|
25 |
+
"moe_layer_freq": 1,
|
26 |
+
"n_group": 8,
|
27 |
+
"n_routed_experts": 256,
|
28 |
+
"n_shared_experts": 1,
|
29 |
+
"norm_topk_prob": true,
|
30 |
+
"num_attention_heads": 128,
|
31 |
+
"num_experts_per_tok": 8,
|
32 |
+
"num_hidden_layers": 61,
|
33 |
+
"num_key_value_heads": 128,
|
34 |
+
"num_nextn_predict_layers": 1,
|
35 |
+
"pretraining_tp": 1,
|
36 |
+
"q_lora_rank": 1536,
|
37 |
+
"qk_nope_head_dim": 128,
|
38 |
+
"qk_rope_head_dim": 64,
|
39 |
+
"quantization_config": {
|
40 |
+
"activation_scheme": "dynamic",
|
41 |
+
"fmt": "e4m3",
|
42 |
+
"quant_method": "fp8",
|
43 |
+
"weight_block_size": [
|
44 |
+
128,
|
45 |
+
128
|
46 |
+
]
|
47 |
+
},
|
48 |
+
"rms_norm_eps": 1e-06,
|
49 |
+
"rope_scaling": {
|
50 |
+
"beta_fast": 32,
|
51 |
+
"beta_slow": 1,
|
52 |
+
"factor": 40,
|
53 |
+
"mscale": 1.0,
|
54 |
+
"mscale_all_dim": 1.0,
|
55 |
+
"original_max_position_embeddings": 4096,
|
56 |
+
"type": "yarn"
|
57 |
+
},
|
58 |
+
"rope_theta": 10000,
|
59 |
+
"routed_scaling_factor": 2.5,
|
60 |
+
"scoring_func": "sigmoid",
|
61 |
+
"seq_aux": true,
|
62 |
+
"tie_word_embeddings": false,
|
63 |
+
"topk_group": 4,
|
64 |
+
"topk_method": "noaux_tc",
|
65 |
+
"torch_dtype": "bfloat16",
|
66 |
+
"transformers_version": "4.33.1",
|
67 |
+
"use_cache": true,
|
68 |
+
"v_head_dim": 128,
|
69 |
+
"vocab_size": 129280
|
70 |
+
}
|
modeling_deepseek.py
ADDED
@@ -0,0 +1,1849 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch DeepSeek model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import (
|
45 |
+
ALL_LAYERNORM_LAYERS,
|
46 |
+
is_torch_greater_or_equal_than_1_13,
|
47 |
+
)
|
48 |
+
from transformers.utils import (
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
is_flash_attn_2_available,
|
52 |
+
is_flash_attn_greater_or_equal_2_10,
|
53 |
+
logging,
|
54 |
+
replace_return_docstrings,
|
55 |
+
)
|
56 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
57 |
+
from .configuration_deepseek import DeepseekV3Config
|
58 |
+
import torch.distributed as dist
|
59 |
+
import numpy as np
|
60 |
+
|
61 |
+
if is_flash_attn_2_available():
|
62 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
63 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
64 |
+
|
65 |
+
|
66 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
67 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
68 |
+
if is_torch_fx_available():
|
69 |
+
if not is_torch_greater_or_equal_than_1_13:
|
70 |
+
import torch.fx
|
71 |
+
|
72 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
73 |
+
|
74 |
+
|
75 |
+
logger = logging.get_logger(__name__)
|
76 |
+
|
77 |
+
_CONFIG_FOR_DOC = "DeepseekV3Config"
|
78 |
+
|
79 |
+
|
80 |
+
def _get_unpad_data(attention_mask):
|
81 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
82 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
83 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
84 |
+
cu_seqlens = F.pad(
|
85 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
86 |
+
)
|
87 |
+
return (
|
88 |
+
indices,
|
89 |
+
cu_seqlens,
|
90 |
+
max_seqlen_in_batch,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
class DeepseekV3RMSNorm(nn.Module):
|
95 |
+
def __init__(self, hidden_size, eps=1e-6):
|
96 |
+
"""
|
97 |
+
DeepseekV3RMSNorm is equivalent to T5LayerNorm
|
98 |
+
"""
|
99 |
+
super().__init__()
|
100 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
101 |
+
self.variance_epsilon = eps
|
102 |
+
|
103 |
+
def forward(self, hidden_states):
|
104 |
+
input_dtype = hidden_states.dtype
|
105 |
+
hidden_states = hidden_states.to(torch.float32)
|
106 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
107 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
108 |
+
return self.weight * hidden_states.to(input_dtype)
|
109 |
+
|
110 |
+
|
111 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
|
112 |
+
|
113 |
+
|
114 |
+
class DeepseekV3RotaryEmbedding(nn.Module):
|
115 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
self.dim = dim
|
119 |
+
self.max_position_embeddings = max_position_embeddings
|
120 |
+
self.base = base
|
121 |
+
inv_freq = 1.0 / (
|
122 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
123 |
+
)
|
124 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
125 |
+
|
126 |
+
# Build here to make `torch.jit.trace` work.
|
127 |
+
self._set_cos_sin_cache(
|
128 |
+
seq_len=max_position_embeddings,
|
129 |
+
device=self.inv_freq.device,
|
130 |
+
dtype=torch.get_default_dtype(),
|
131 |
+
)
|
132 |
+
self.max_seq_len_cached = None
|
133 |
+
|
134 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
+
self.max_seq_len_cached = seq_len
|
136 |
+
t = torch.arange(
|
137 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
138 |
+
)
|
139 |
+
|
140 |
+
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
141 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
144 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
145 |
+
|
146 |
+
def forward(self, x, seq_len=None):
|
147 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
148 |
+
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
149 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
150 |
+
|
151 |
+
return (
|
152 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
153 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
|
158 |
+
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
159 |
+
"""DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
dim,
|
164 |
+
max_position_embeddings=2048,
|
165 |
+
base=10000,
|
166 |
+
device=None,
|
167 |
+
scaling_factor=1.0,
|
168 |
+
):
|
169 |
+
self.scaling_factor = scaling_factor
|
170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
171 |
+
|
172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
173 |
+
self.max_seq_len_cached = seq_len
|
174 |
+
t = torch.arange(
|
175 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
176 |
+
)
|
177 |
+
t = t / self.scaling_factor
|
178 |
+
|
179 |
+
freqs = torch.outer(t, self.inv_freq)
|
180 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
181 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
182 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
183 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
184 |
+
|
185 |
+
|
186 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
|
187 |
+
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
188 |
+
"""DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
dim,
|
193 |
+
max_position_embeddings=2048,
|
194 |
+
base=10000,
|
195 |
+
device=None,
|
196 |
+
scaling_factor=1.0,
|
197 |
+
):
|
198 |
+
self.scaling_factor = scaling_factor
|
199 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
200 |
+
|
201 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
202 |
+
self.max_seq_len_cached = seq_len
|
203 |
+
|
204 |
+
if seq_len > self.max_position_embeddings:
|
205 |
+
base = self.base * (
|
206 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
207 |
+
- (self.scaling_factor - 1)
|
208 |
+
) ** (self.dim / (self.dim - 2))
|
209 |
+
inv_freq = 1.0 / (
|
210 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
211 |
+
)
|
212 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
213 |
+
|
214 |
+
t = torch.arange(
|
215 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
216 |
+
)
|
217 |
+
|
218 |
+
freqs = torch.outer(t, self.inv_freq)
|
219 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
220 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
221 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
222 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
223 |
+
|
224 |
+
|
225 |
+
# Inverse dim formula to find dim based on number of rotations
|
226 |
+
def yarn_find_correction_dim(
|
227 |
+
num_rotations, dim, base=10000, max_position_embeddings=2048
|
228 |
+
):
|
229 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
230 |
+
2 * math.log(base)
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
# Find dim range bounds based on rotations
|
235 |
+
def yarn_find_correction_range(
|
236 |
+
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
237 |
+
):
|
238 |
+
low = math.floor(
|
239 |
+
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
240 |
+
)
|
241 |
+
high = math.ceil(
|
242 |
+
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
243 |
+
)
|
244 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
245 |
+
|
246 |
+
|
247 |
+
def yarn_get_mscale(scale=1, mscale=1):
|
248 |
+
if scale <= 1:
|
249 |
+
return 1.0
|
250 |
+
return 0.1 * mscale * math.log(scale) + 1.0
|
251 |
+
|
252 |
+
|
253 |
+
def yarn_linear_ramp_mask(min, max, dim):
|
254 |
+
if min == max:
|
255 |
+
max += 0.001 # Prevent singularity
|
256 |
+
|
257 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
258 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
259 |
+
return ramp_func
|
260 |
+
|
261 |
+
|
262 |
+
class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
|
263 |
+
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
dim,
|
267 |
+
max_position_embeddings=2048,
|
268 |
+
base=10000,
|
269 |
+
device=None,
|
270 |
+
scaling_factor=1.0,
|
271 |
+
original_max_position_embeddings=4096,
|
272 |
+
beta_fast=32,
|
273 |
+
beta_slow=1,
|
274 |
+
mscale=1,
|
275 |
+
mscale_all_dim=0,
|
276 |
+
):
|
277 |
+
self.scaling_factor = scaling_factor
|
278 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
279 |
+
self.beta_fast = beta_fast
|
280 |
+
self.beta_slow = beta_slow
|
281 |
+
self.mscale = mscale
|
282 |
+
self.mscale_all_dim = mscale_all_dim
|
283 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
284 |
+
|
285 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
286 |
+
self.max_seq_len_cached = seq_len
|
287 |
+
dim = self.dim
|
288 |
+
|
289 |
+
freq_extra = 1.0 / (
|
290 |
+
self.base
|
291 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
292 |
+
)
|
293 |
+
freq_inter = 1.0 / (
|
294 |
+
self.scaling_factor
|
295 |
+
* self.base
|
296 |
+
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
297 |
+
)
|
298 |
+
|
299 |
+
low, high = yarn_find_correction_range(
|
300 |
+
self.beta_fast,
|
301 |
+
self.beta_slow,
|
302 |
+
dim,
|
303 |
+
self.base,
|
304 |
+
self.original_max_position_embeddings,
|
305 |
+
)
|
306 |
+
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
307 |
+
device=device, dtype=torch.float32
|
308 |
+
)
|
309 |
+
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
310 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
311 |
+
|
312 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
313 |
+
|
314 |
+
freqs = torch.outer(t, inv_freq)
|
315 |
+
|
316 |
+
_mscale = float(
|
317 |
+
yarn_get_mscale(self.scaling_factor, self.mscale)
|
318 |
+
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
319 |
+
)
|
320 |
+
|
321 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
322 |
+
self.register_buffer(
|
323 |
+
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
324 |
+
)
|
325 |
+
self.register_buffer(
|
326 |
+
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
331 |
+
def rotate_half(x):
|
332 |
+
"""Rotates half the hidden dims of the input."""
|
333 |
+
x1 = x[..., : x.shape[-1] // 2]
|
334 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
335 |
+
return torch.cat((-x2, x1), dim=-1)
|
336 |
+
|
337 |
+
|
338 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
339 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
340 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
q (`torch.Tensor`): The query tensor.
|
344 |
+
k (`torch.Tensor`): The key tensor.
|
345 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
346 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
347 |
+
position_ids (`torch.Tensor`):
|
348 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
349 |
+
used to pass offsetted position ids when working with a KV-cache.
|
350 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
351 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
352 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
353 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
354 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
355 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
356 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
357 |
+
Returns:
|
358 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
359 |
+
"""
|
360 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
361 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
362 |
+
|
363 |
+
b, h, s, d = q.shape
|
364 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
365 |
+
|
366 |
+
b, h, s, d = k.shape
|
367 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
368 |
+
|
369 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
370 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
371 |
+
return q_embed, k_embed
|
372 |
+
|
373 |
+
|
374 |
+
class DeepseekV3MLP(nn.Module):
|
375 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
376 |
+
super().__init__()
|
377 |
+
self.config = config
|
378 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
379 |
+
self.intermediate_size = (
|
380 |
+
config.intermediate_size if intermediate_size is None else intermediate_size
|
381 |
+
)
|
382 |
+
|
383 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
384 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
385 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
386 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
387 |
+
|
388 |
+
def forward(self, x):
|
389 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
390 |
+
return down_proj
|
391 |
+
|
392 |
+
|
393 |
+
class MoEGate(nn.Module):
|
394 |
+
def __init__(self, config):
|
395 |
+
super().__init__()
|
396 |
+
self.config = config
|
397 |
+
self.top_k = config.num_experts_per_tok
|
398 |
+
self.n_routed_experts = config.n_routed_experts
|
399 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
400 |
+
self.scoring_func = config.scoring_func
|
401 |
+
self.seq_aux = config.seq_aux
|
402 |
+
self.topk_method = config.topk_method
|
403 |
+
self.n_group = config.n_group
|
404 |
+
self.topk_group = config.topk_group
|
405 |
+
|
406 |
+
# topk selection algorithm
|
407 |
+
self.norm_topk_prob = config.norm_topk_prob
|
408 |
+
self.gating_dim = config.hidden_size
|
409 |
+
self.weight = nn.Parameter(
|
410 |
+
torch.empty((self.n_routed_experts, self.gating_dim))
|
411 |
+
)
|
412 |
+
if self.topk_method == "noaux_tc":
|
413 |
+
self.e_score_correction_bias = nn.Parameter(
|
414 |
+
torch.empty((self.n_routed_experts))
|
415 |
+
)
|
416 |
+
self.reset_parameters()
|
417 |
+
|
418 |
+
def reset_parameters(self) -> None:
|
419 |
+
import torch.nn.init as init
|
420 |
+
|
421 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
422 |
+
|
423 |
+
def forward(self, hidden_states):
|
424 |
+
bsz, seq_len, h = hidden_states.shape
|
425 |
+
### compute gating score
|
426 |
+
hidden_states = hidden_states.view(-1, h)
|
427 |
+
logits = F.linear(
|
428 |
+
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
429 |
+
)
|
430 |
+
if self.scoring_func == "sigmoid":
|
431 |
+
scores = logits.sigmoid()
|
432 |
+
else:
|
433 |
+
raise NotImplementedError(
|
434 |
+
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
435 |
+
)
|
436 |
+
|
437 |
+
### select top-k experts
|
438 |
+
if self.topk_method == "noaux_tc":
|
439 |
+
assert not self.training
|
440 |
+
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
|
441 |
+
group_scores = (
|
442 |
+
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
|
443 |
+
) # [n, n_group]
|
444 |
+
group_idx = torch.topk(
|
445 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
446 |
+
)[
|
447 |
+
1
|
448 |
+
] # [n, top_k_group]
|
449 |
+
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
450 |
+
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
451 |
+
score_mask = (
|
452 |
+
group_mask.unsqueeze(-1)
|
453 |
+
.expand(
|
454 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
455 |
+
)
|
456 |
+
.reshape(bsz * seq_len, -1)
|
457 |
+
) # [n, e]
|
458 |
+
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
459 |
+
_, topk_idx = torch.topk(
|
460 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
461 |
+
)
|
462 |
+
topk_weight = scores.gather(1, topk_idx)
|
463 |
+
else:
|
464 |
+
raise NotImplementedError(
|
465 |
+
f"insupportable TopK function for MoE gating: {self.topk_method}"
|
466 |
+
)
|
467 |
+
|
468 |
+
### norm gate to sum 1
|
469 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
470 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
471 |
+
topk_weight = topk_weight / denominator
|
472 |
+
topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
|
473 |
+
|
474 |
+
return topk_idx, topk_weight
|
475 |
+
|
476 |
+
class DeepseekV3MoE(nn.Module):
|
477 |
+
"""
|
478 |
+
A mixed expert module containing shared experts.
|
479 |
+
"""
|
480 |
+
|
481 |
+
def __init__(self, config):
|
482 |
+
super().__init__()
|
483 |
+
self.config = config
|
484 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
485 |
+
|
486 |
+
if hasattr(config, "ep_size") and config.ep_size > 1:
|
487 |
+
assert config.ep_size == dist.get_world_size()
|
488 |
+
self.ep_size = config.ep_size
|
489 |
+
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
490 |
+
self.ep_rank = dist.get_rank()
|
491 |
+
self.experts = nn.ModuleList(
|
492 |
+
[
|
493 |
+
(
|
494 |
+
DeepseekV3MLP(
|
495 |
+
config, intermediate_size=config.moe_intermediate_size
|
496 |
+
)
|
497 |
+
if i >= self.ep_rank * self.experts_per_rank
|
498 |
+
and i < (self.ep_rank + 1) * self.experts_per_rank
|
499 |
+
else None
|
500 |
+
)
|
501 |
+
for i in range(config.n_routed_experts)
|
502 |
+
]
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
self.ep_size = 1
|
506 |
+
self.experts_per_rank = config.n_routed_experts
|
507 |
+
self.ep_rank = 0
|
508 |
+
self.experts = nn.ModuleList(
|
509 |
+
[
|
510 |
+
DeepseekV3MLP(
|
511 |
+
config, intermediate_size=config.moe_intermediate_size
|
512 |
+
)
|
513 |
+
for i in range(config.n_routed_experts)
|
514 |
+
]
|
515 |
+
)
|
516 |
+
self.gate = MoEGate(config)
|
517 |
+
if config.n_shared_experts is not None:
|
518 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
519 |
+
self.shared_experts = DeepseekV3MLP(
|
520 |
+
config=config, intermediate_size=intermediate_size
|
521 |
+
)
|
522 |
+
|
523 |
+
def forward(self, hidden_states):
|
524 |
+
identity = hidden_states
|
525 |
+
orig_shape = hidden_states.shape
|
526 |
+
topk_idx, topk_weight = self.gate(hidden_states)
|
527 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
528 |
+
flat_topk_idx = topk_idx.view(-1)
|
529 |
+
if not self.training:
|
530 |
+
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
531 |
+
if self.config.n_shared_experts is not None:
|
532 |
+
y = y + self.shared_experts(identity)
|
533 |
+
return y
|
534 |
+
|
535 |
+
@torch.no_grad()
|
536 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
537 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
538 |
+
cnts.scatter_(1, topk_ids, 1)
|
539 |
+
tokens_per_expert = cnts.sum(dim=0)
|
540 |
+
idxs = topk_ids.view(-1).argsort()
|
541 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
542 |
+
sorted_tokens_shape = sorted_tokens.shape
|
543 |
+
if self.ep_size > 1:
|
544 |
+
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
545 |
+
tokens_per_expert_group = tokens_per_expert.new_empty(
|
546 |
+
tokens_per_expert.shape[0]
|
547 |
+
)
|
548 |
+
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
549 |
+
output_splits = (
|
550 |
+
tokens_per_expert_group.view(self.ep_size, -1)
|
551 |
+
.sum(1)
|
552 |
+
.cpu()
|
553 |
+
.numpy()
|
554 |
+
.tolist()
|
555 |
+
)
|
556 |
+
gathered_tokens = sorted_tokens.new_empty(
|
557 |
+
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
558 |
+
)
|
559 |
+
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
560 |
+
dist.all_to_all(
|
561 |
+
list(gathered_tokens.split(output_splits)),
|
562 |
+
list(sorted_tokens.split(input_split_sizes)),
|
563 |
+
)
|
564 |
+
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
565 |
+
self.ep_size, self.experts_per_rank
|
566 |
+
).sum(dim=0)
|
567 |
+
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
568 |
+
s = 0
|
569 |
+
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
570 |
+
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
571 |
+
s += k
|
572 |
+
gatherd_idxs = gatherd_idxs.argsort()
|
573 |
+
sorted_tokens = gathered_tokens[gatherd_idxs]
|
574 |
+
tokens_per_expert = tokens_per_expert_post_gather
|
575 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
576 |
+
|
577 |
+
outputs = []
|
578 |
+
start_idx = 0
|
579 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
580 |
+
end_idx = start_idx + num_tokens
|
581 |
+
if num_tokens == 0:
|
582 |
+
continue
|
583 |
+
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
584 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
585 |
+
expert_out = expert(tokens_for_this_expert)
|
586 |
+
outputs.append(expert_out)
|
587 |
+
start_idx = end_idx
|
588 |
+
|
589 |
+
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
590 |
+
if self.ep_size > 1:
|
591 |
+
new_x = torch.empty_like(outs)
|
592 |
+
new_x[gatherd_idxs] = outs
|
593 |
+
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
594 |
+
dist.all_to_all(
|
595 |
+
list(gathered_tokens.split(input_split_sizes)),
|
596 |
+
list(new_x.split(output_splits)),
|
597 |
+
)
|
598 |
+
outs = gathered_tokens
|
599 |
+
|
600 |
+
new_x = torch.empty_like(outs)
|
601 |
+
new_x[idxs] = outs
|
602 |
+
final_out = (
|
603 |
+
new_x.view(*topk_ids.shape, -1)
|
604 |
+
.type(topk_weight.dtype)
|
605 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
606 |
+
.sum(dim=1)
|
607 |
+
.type(new_x.dtype)
|
608 |
+
)
|
609 |
+
return final_out
|
610 |
+
|
611 |
+
|
612 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
613 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
614 |
+
"""
|
615 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
616 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
617 |
+
"""
|
618 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
619 |
+
if n_rep == 1:
|
620 |
+
return hidden_states
|
621 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
622 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
623 |
+
)
|
624 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
625 |
+
|
626 |
+
|
627 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
|
628 |
+
class DeepseekV3Attention(nn.Module):
|
629 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
630 |
+
|
631 |
+
def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
|
632 |
+
super().__init__()
|
633 |
+
self.config = config
|
634 |
+
self.layer_idx = layer_idx
|
635 |
+
if layer_idx is None:
|
636 |
+
logger.warning_once(
|
637 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
638 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
639 |
+
"when creating this class."
|
640 |
+
)
|
641 |
+
|
642 |
+
self.attention_dropout = config.attention_dropout
|
643 |
+
self.hidden_size = config.hidden_size
|
644 |
+
self.num_heads = config.num_attention_heads
|
645 |
+
|
646 |
+
self.max_position_embeddings = config.max_position_embeddings
|
647 |
+
self.rope_theta = config.rope_theta
|
648 |
+
self.q_lora_rank = config.q_lora_rank
|
649 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
650 |
+
self.kv_lora_rank = config.kv_lora_rank
|
651 |
+
self.v_head_dim = config.v_head_dim
|
652 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
653 |
+
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
654 |
+
|
655 |
+
self.is_causal = True
|
656 |
+
|
657 |
+
if self.q_lora_rank is None:
|
658 |
+
self.q_proj = nn.Linear(
|
659 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
660 |
+
)
|
661 |
+
else:
|
662 |
+
self.q_a_proj = nn.Linear(
|
663 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
664 |
+
)
|
665 |
+
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
|
666 |
+
self.q_b_proj = nn.Linear(
|
667 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
668 |
+
)
|
669 |
+
|
670 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
671 |
+
self.hidden_size,
|
672 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
673 |
+
bias=config.attention_bias,
|
674 |
+
)
|
675 |
+
self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
|
676 |
+
self.kv_b_proj = nn.Linear(
|
677 |
+
config.kv_lora_rank,
|
678 |
+
self.num_heads
|
679 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
680 |
+
bias=False,
|
681 |
+
)
|
682 |
+
|
683 |
+
self.o_proj = nn.Linear(
|
684 |
+
self.num_heads * self.v_head_dim,
|
685 |
+
self.hidden_size,
|
686 |
+
bias=config.attention_bias,
|
687 |
+
)
|
688 |
+
self._init_rope()
|
689 |
+
|
690 |
+
self.softmax_scale = self.q_head_dim ** (-0.5)
|
691 |
+
if self.config.rope_scaling is not None:
|
692 |
+
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
693 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
694 |
+
if mscale_all_dim:
|
695 |
+
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
696 |
+
self.softmax_scale = self.softmax_scale * mscale * mscale
|
697 |
+
|
698 |
+
def _init_rope(self):
|
699 |
+
if self.config.rope_scaling is None:
|
700 |
+
self.rotary_emb = DeepseekV3RotaryEmbedding(
|
701 |
+
self.qk_rope_head_dim,
|
702 |
+
max_position_embeddings=self.max_position_embeddings,
|
703 |
+
base=self.rope_theta,
|
704 |
+
)
|
705 |
+
else:
|
706 |
+
scaling_type = self.config.rope_scaling["type"]
|
707 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
708 |
+
if scaling_type == "linear":
|
709 |
+
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
|
710 |
+
self.qk_rope_head_dim,
|
711 |
+
max_position_embeddings=self.max_position_embeddings,
|
712 |
+
scaling_factor=scaling_factor,
|
713 |
+
base=self.rope_theta,
|
714 |
+
)
|
715 |
+
elif scaling_type == "dynamic":
|
716 |
+
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
|
717 |
+
self.qk_rope_head_dim,
|
718 |
+
max_position_embeddings=self.max_position_embeddings,
|
719 |
+
scaling_factor=scaling_factor,
|
720 |
+
base=self.rope_theta,
|
721 |
+
)
|
722 |
+
elif scaling_type == "yarn":
|
723 |
+
kwargs = {
|
724 |
+
key: self.config.rope_scaling[key]
|
725 |
+
for key in [
|
726 |
+
"original_max_position_embeddings",
|
727 |
+
"beta_fast",
|
728 |
+
"beta_slow",
|
729 |
+
"mscale",
|
730 |
+
"mscale_all_dim",
|
731 |
+
]
|
732 |
+
if key in self.config.rope_scaling
|
733 |
+
}
|
734 |
+
self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
|
735 |
+
self.qk_rope_head_dim,
|
736 |
+
max_position_embeddings=self.max_position_embeddings,
|
737 |
+
scaling_factor=scaling_factor,
|
738 |
+
base=self.rope_theta,
|
739 |
+
**kwargs,
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
743 |
+
|
744 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
745 |
+
return (
|
746 |
+
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
747 |
+
.transpose(1, 2)
|
748 |
+
.contiguous()
|
749 |
+
)
|
750 |
+
|
751 |
+
def forward(
|
752 |
+
self,
|
753 |
+
hidden_states: torch.Tensor,
|
754 |
+
attention_mask: Optional[torch.Tensor] = None,
|
755 |
+
position_ids: Optional[torch.LongTensor] = None,
|
756 |
+
past_key_value: Optional[Cache] = None,
|
757 |
+
output_attentions: bool = False,
|
758 |
+
use_cache: bool = False,
|
759 |
+
**kwargs,
|
760 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
761 |
+
if "padding_mask" in kwargs:
|
762 |
+
warnings.warn(
|
763 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
764 |
+
)
|
765 |
+
bsz, q_len, _ = hidden_states.size()
|
766 |
+
|
767 |
+
if self.q_lora_rank is None:
|
768 |
+
q = self.q_proj(hidden_states)
|
769 |
+
else:
|
770 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
771 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
772 |
+
q_nope, q_pe = torch.split(
|
773 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
774 |
+
)
|
775 |
+
|
776 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
777 |
+
compressed_kv, k_pe = torch.split(
|
778 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
779 |
+
)
|
780 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
781 |
+
kv = (
|
782 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
783 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
784 |
+
.transpose(1, 2)
|
785 |
+
)
|
786 |
+
|
787 |
+
k_nope, value_states = torch.split(
|
788 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
789 |
+
)
|
790 |
+
kv_seq_len = value_states.shape[-2]
|
791 |
+
if past_key_value is not None:
|
792 |
+
if self.layer_idx is None:
|
793 |
+
raise ValueError(
|
794 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
795 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
796 |
+
"with a layer index."
|
797 |
+
)
|
798 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
799 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
800 |
+
|
801 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
802 |
+
|
803 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
804 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
805 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
806 |
+
|
807 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
808 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
809 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
810 |
+
if past_key_value is not None:
|
811 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
812 |
+
key_states, value_states = past_key_value.update(
|
813 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
814 |
+
)
|
815 |
+
|
816 |
+
attn_weights = (
|
817 |
+
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
818 |
+
)
|
819 |
+
|
820 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
821 |
+
raise ValueError(
|
822 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
823 |
+
f" {attn_weights.size()}"
|
824 |
+
)
|
825 |
+
assert attention_mask is not None
|
826 |
+
if attention_mask is not None:
|
827 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
828 |
+
raise ValueError(
|
829 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
830 |
+
)
|
831 |
+
attn_weights = attn_weights + attention_mask
|
832 |
+
|
833 |
+
# upcast attention to fp32
|
834 |
+
attn_weights = nn.functional.softmax(
|
835 |
+
attn_weights, dim=-1, dtype=torch.float32
|
836 |
+
).to(query_states.dtype)
|
837 |
+
attn_weights = nn.functional.dropout(
|
838 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
839 |
+
)
|
840 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
841 |
+
|
842 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
843 |
+
raise ValueError(
|
844 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
845 |
+
f" {attn_output.size()}"
|
846 |
+
)
|
847 |
+
|
848 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
849 |
+
|
850 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
851 |
+
|
852 |
+
attn_output = self.o_proj(attn_output)
|
853 |
+
|
854 |
+
if not output_attentions:
|
855 |
+
attn_weights = None
|
856 |
+
|
857 |
+
return attn_output, attn_weights, past_key_value
|
858 |
+
|
859 |
+
|
860 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
|
861 |
+
class DeepseekV3FlashAttention2(DeepseekV3Attention):
|
862 |
+
"""
|
863 |
+
DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
|
864 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
865 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
866 |
+
"""
|
867 |
+
|
868 |
+
def __init__(self, *args, **kwargs):
|
869 |
+
super().__init__(*args, **kwargs)
|
870 |
+
|
871 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
872 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
873 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
874 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
875 |
+
|
876 |
+
def forward(
|
877 |
+
self,
|
878 |
+
hidden_states: torch.Tensor,
|
879 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
880 |
+
position_ids: Optional[torch.LongTensor] = None,
|
881 |
+
past_key_value: Optional[Cache] = None,
|
882 |
+
output_attentions: bool = False,
|
883 |
+
use_cache: bool = False,
|
884 |
+
**kwargs,
|
885 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
886 |
+
# DeepseekV3FlashAttention2 attention does not support output_attentions
|
887 |
+
if "padding_mask" in kwargs:
|
888 |
+
warnings.warn(
|
889 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
890 |
+
)
|
891 |
+
|
892 |
+
# overwrite attention_mask with padding_mask
|
893 |
+
attention_mask = kwargs.pop("padding_mask")
|
894 |
+
|
895 |
+
output_attentions = False
|
896 |
+
|
897 |
+
bsz, q_len, _ = hidden_states.size()
|
898 |
+
|
899 |
+
if self.q_lora_rank is None:
|
900 |
+
q = self.q_proj(hidden_states)
|
901 |
+
else:
|
902 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
903 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
904 |
+
q_nope, q_pe = torch.split(
|
905 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
906 |
+
)
|
907 |
+
|
908 |
+
# Flash attention requires the input to have the shape
|
909 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
910 |
+
# therefore we just need to keep the original shape
|
911 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
912 |
+
compressed_kv, k_pe = torch.split(
|
913 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
914 |
+
)
|
915 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
916 |
+
kv = (
|
917 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
918 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
919 |
+
.transpose(1, 2)
|
920 |
+
)
|
921 |
+
|
922 |
+
k_nope, value_states = torch.split(
|
923 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
924 |
+
)
|
925 |
+
kv_seq_len = value_states.shape[-2]
|
926 |
+
|
927 |
+
kv_seq_len = value_states.shape[-2]
|
928 |
+
if past_key_value is not None:
|
929 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
930 |
+
|
931 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
932 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
933 |
+
|
934 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
935 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
936 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
937 |
+
|
938 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
939 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
940 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
941 |
+
|
942 |
+
if self.q_head_dim != self.v_head_dim:
|
943 |
+
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
944 |
+
|
945 |
+
if past_key_value is not None:
|
946 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
947 |
+
key_states, value_states = past_key_value.update(
|
948 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
949 |
+
)
|
950 |
+
|
951 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
952 |
+
# to be able to avoid many of these transpose/reshape/view.
|
953 |
+
query_states = query_states.transpose(1, 2)
|
954 |
+
key_states = key_states.transpose(1, 2)
|
955 |
+
value_states = value_states.transpose(1, 2)
|
956 |
+
|
957 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
958 |
+
|
959 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
960 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
961 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
962 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
963 |
+
# in fp32. (DeepseekV3RMSNorm handles it correctly)
|
964 |
+
|
965 |
+
input_dtype = query_states.dtype
|
966 |
+
if input_dtype == torch.float32:
|
967 |
+
# Handle the case where the model is quantized
|
968 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
969 |
+
target_dtype = self.config._pre_quantization_dtype
|
970 |
+
elif torch.is_autocast_enabled():
|
971 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
972 |
+
else:
|
973 |
+
target_dtype = (
|
974 |
+
self.q_proj.weight.dtype
|
975 |
+
if self.q_lora_rank is None
|
976 |
+
else self.q_a_proj.weight.dtype
|
977 |
+
)
|
978 |
+
|
979 |
+
logger.warning_once(
|
980 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
981 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
982 |
+
f" {target_dtype}."
|
983 |
+
)
|
984 |
+
|
985 |
+
query_states = query_states.to(target_dtype)
|
986 |
+
key_states = key_states.to(target_dtype)
|
987 |
+
value_states = value_states.to(target_dtype)
|
988 |
+
|
989 |
+
attn_output = self._flash_attention_forward(
|
990 |
+
query_states,
|
991 |
+
key_states,
|
992 |
+
value_states,
|
993 |
+
attention_mask,
|
994 |
+
q_len,
|
995 |
+
dropout=dropout_rate,
|
996 |
+
softmax_scale=self.softmax_scale,
|
997 |
+
)
|
998 |
+
if self.q_head_dim != self.v_head_dim:
|
999 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
1000 |
+
|
1001 |
+
attn_output = attn_output.reshape(
|
1002 |
+
bsz, q_len, self.num_heads * self.v_head_dim
|
1003 |
+
).contiguous()
|
1004 |
+
attn_output = self.o_proj(attn_output)
|
1005 |
+
|
1006 |
+
if not output_attentions:
|
1007 |
+
attn_weights = None
|
1008 |
+
|
1009 |
+
return attn_output, attn_weights, past_key_value
|
1010 |
+
|
1011 |
+
def _flash_attention_forward(
|
1012 |
+
self,
|
1013 |
+
query_states,
|
1014 |
+
key_states,
|
1015 |
+
value_states,
|
1016 |
+
attention_mask,
|
1017 |
+
query_length,
|
1018 |
+
dropout=0.0,
|
1019 |
+
softmax_scale=None,
|
1020 |
+
):
|
1021 |
+
"""
|
1022 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1023 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1024 |
+
|
1025 |
+
Args:
|
1026 |
+
query_states (`torch.Tensor`):
|
1027 |
+
Input query states to be passed to Flash Attention API
|
1028 |
+
key_states (`torch.Tensor`):
|
1029 |
+
Input key states to be passed to Flash Attention API
|
1030 |
+
value_states (`torch.Tensor`):
|
1031 |
+
Input value states to be passed to Flash Attention API
|
1032 |
+
attention_mask (`torch.Tensor`):
|
1033 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1034 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1035 |
+
dropout (`int`, *optional*):
|
1036 |
+
Attention dropout
|
1037 |
+
softmax_scale (`float`, *optional*):
|
1038 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1039 |
+
"""
|
1040 |
+
if not self._flash_attn_uses_top_left_mask:
|
1041 |
+
causal = self.is_causal
|
1042 |
+
else:
|
1043 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
|
1044 |
+
causal = self.is_causal and query_length != 1
|
1045 |
+
|
1046 |
+
# Contains at least one padding token in the sequence
|
1047 |
+
if attention_mask is not None:
|
1048 |
+
batch_size = query_states.shape[0]
|
1049 |
+
(
|
1050 |
+
query_states,
|
1051 |
+
key_states,
|
1052 |
+
value_states,
|
1053 |
+
indices_q,
|
1054 |
+
cu_seq_lens,
|
1055 |
+
max_seq_lens,
|
1056 |
+
) = self._upad_input(
|
1057 |
+
query_states, key_states, value_states, attention_mask, query_length
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1061 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1062 |
+
|
1063 |
+
attn_output_unpad = flash_attn_varlen_func(
|
1064 |
+
query_states,
|
1065 |
+
key_states,
|
1066 |
+
value_states,
|
1067 |
+
cu_seqlens_q=cu_seqlens_q,
|
1068 |
+
cu_seqlens_k=cu_seqlens_k,
|
1069 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1070 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1071 |
+
dropout_p=dropout,
|
1072 |
+
softmax_scale=softmax_scale,
|
1073 |
+
causal=causal,
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
attn_output = pad_input(
|
1077 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
1078 |
+
)
|
1079 |
+
else:
|
1080 |
+
attn_output = flash_attn_func(
|
1081 |
+
query_states,
|
1082 |
+
key_states,
|
1083 |
+
value_states,
|
1084 |
+
dropout,
|
1085 |
+
softmax_scale=softmax_scale,
|
1086 |
+
causal=causal,
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
return attn_output
|
1090 |
+
|
1091 |
+
def _upad_input(
|
1092 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1093 |
+
):
|
1094 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1095 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1096 |
+
|
1097 |
+
key_layer = index_first_axis(
|
1098 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1099 |
+
indices_k,
|
1100 |
+
)
|
1101 |
+
value_layer = index_first_axis(
|
1102 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
1103 |
+
indices_k,
|
1104 |
+
)
|
1105 |
+
if query_length == kv_seq_len:
|
1106 |
+
query_layer = index_first_axis(
|
1107 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
1108 |
+
indices_k,
|
1109 |
+
)
|
1110 |
+
cu_seqlens_q = cu_seqlens_k
|
1111 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1112 |
+
indices_q = indices_k
|
1113 |
+
elif query_length == 1:
|
1114 |
+
max_seqlen_in_batch_q = 1
|
1115 |
+
cu_seqlens_q = torch.arange(
|
1116 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
1117 |
+
) # There is a memcpy here, that is very bad.
|
1118 |
+
indices_q = cu_seqlens_q[:-1]
|
1119 |
+
query_layer = query_layer.squeeze(1)
|
1120 |
+
else:
|
1121 |
+
# The -q_len: slice assumes left padding.
|
1122 |
+
attention_mask = attention_mask[:, -query_length:]
|
1123 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1124 |
+
query_layer, attention_mask
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
return (
|
1128 |
+
query_layer,
|
1129 |
+
key_layer,
|
1130 |
+
value_layer,
|
1131 |
+
indices_q,
|
1132 |
+
(cu_seqlens_q, cu_seqlens_k),
|
1133 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
|
1137 |
+
ATTENTION_CLASSES = {
|
1138 |
+
"eager": DeepseekV3Attention,
|
1139 |
+
"flash_attention_2": DeepseekV3FlashAttention2,
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
|
1143 |
+
class DeepseekV3DecoderLayer(nn.Module):
|
1144 |
+
def __init__(self, config: DeepseekV3Config, layer_idx: int):
|
1145 |
+
super().__init__()
|
1146 |
+
self.hidden_size = config.hidden_size
|
1147 |
+
|
1148 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
1149 |
+
config=config, layer_idx=layer_idx
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
self.mlp = (
|
1153 |
+
DeepseekV3MoE(config)
|
1154 |
+
if (
|
1155 |
+
config.n_routed_experts is not None
|
1156 |
+
and layer_idx >= config.first_k_dense_replace
|
1157 |
+
and layer_idx % config.moe_layer_freq == 0
|
1158 |
+
)
|
1159 |
+
else DeepseekV3MLP(config)
|
1160 |
+
)
|
1161 |
+
self.input_layernorm = DeepseekV3RMSNorm(
|
1162 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1163 |
+
)
|
1164 |
+
self.post_attention_layernorm = DeepseekV3RMSNorm(
|
1165 |
+
config.hidden_size, eps=config.rms_norm_eps
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
def forward(
|
1169 |
+
self,
|
1170 |
+
hidden_states: torch.Tensor,
|
1171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1172 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1173 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1174 |
+
output_attentions: Optional[bool] = False,
|
1175 |
+
use_cache: Optional[bool] = False,
|
1176 |
+
**kwargs,
|
1177 |
+
) -> Tuple[
|
1178 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
1179 |
+
]:
|
1180 |
+
"""
|
1181 |
+
Args:
|
1182 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1183 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
1184 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
1185 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
1186 |
+
output_attentions (`bool`, *optional*):
|
1187 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1188 |
+
returned tensors for more detail.
|
1189 |
+
use_cache (`bool`, *optional*):
|
1190 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1191 |
+
(see `past_key_values`).
|
1192 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1193 |
+
"""
|
1194 |
+
if "padding_mask" in kwargs:
|
1195 |
+
warnings.warn(
|
1196 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1197 |
+
)
|
1198 |
+
residual = hidden_states
|
1199 |
+
|
1200 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1201 |
+
|
1202 |
+
# Self Attention
|
1203 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1204 |
+
hidden_states=hidden_states,
|
1205 |
+
attention_mask=attention_mask,
|
1206 |
+
position_ids=position_ids,
|
1207 |
+
past_key_value=past_key_value,
|
1208 |
+
output_attentions=output_attentions,
|
1209 |
+
use_cache=use_cache,
|
1210 |
+
**kwargs,
|
1211 |
+
)
|
1212 |
+
hidden_states = residual + hidden_states
|
1213 |
+
|
1214 |
+
# Fully Connected
|
1215 |
+
residual = hidden_states
|
1216 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1217 |
+
hidden_states = self.mlp(hidden_states)
|
1218 |
+
hidden_states = residual + hidden_states
|
1219 |
+
|
1220 |
+
outputs = (hidden_states,)
|
1221 |
+
|
1222 |
+
if output_attentions:
|
1223 |
+
outputs += (self_attn_weights,)
|
1224 |
+
|
1225 |
+
if use_cache:
|
1226 |
+
outputs += (present_key_value,)
|
1227 |
+
|
1228 |
+
return outputs
|
1229 |
+
|
1230 |
+
|
1231 |
+
DeepseekV3_START_DOCSTRING = r"""
|
1232 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1233 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1234 |
+
etc.)
|
1235 |
+
|
1236 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1237 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1238 |
+
and behavior.
|
1239 |
+
|
1240 |
+
Parameters:
|
1241 |
+
config ([`DeepseekV3Config`]):
|
1242 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1243 |
+
load the weights associated with the model, only the configuration. Check out the
|
1244 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1245 |
+
"""
|
1246 |
+
|
1247 |
+
|
1248 |
+
@add_start_docstrings(
|
1249 |
+
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
|
1250 |
+
DeepseekV3_START_DOCSTRING,
|
1251 |
+
)
|
1252 |
+
class DeepseekV3PreTrainedModel(PreTrainedModel):
|
1253 |
+
config_class = DeepseekV3Config
|
1254 |
+
base_model_prefix = "model"
|
1255 |
+
supports_gradient_checkpointing = True
|
1256 |
+
_no_split_modules = ["DeepseekV3DecoderLayer"]
|
1257 |
+
_skip_keys_device_placement = "past_key_values"
|
1258 |
+
_supports_flash_attn_2 = True
|
1259 |
+
_supports_cache_class = True
|
1260 |
+
|
1261 |
+
def _init_weights(self, module):
|
1262 |
+
std = self.config.initializer_range
|
1263 |
+
if isinstance(module, nn.Linear):
|
1264 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1265 |
+
if module.bias is not None:
|
1266 |
+
module.bias.data.zero_()
|
1267 |
+
elif isinstance(module, nn.Embedding):
|
1268 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1269 |
+
if module.padding_idx is not None:
|
1270 |
+
module.weight.data[module.padding_idx].zero_()
|
1271 |
+
|
1272 |
+
|
1273 |
+
DeepseekV3_INPUTS_DOCSTRING = r"""
|
1274 |
+
Args:
|
1275 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1276 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1277 |
+
it.
|
1278 |
+
|
1279 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1280 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1281 |
+
|
1282 |
+
[What are input IDs?](../glossary#input-ids)
|
1283 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1284 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1285 |
+
|
1286 |
+
- 1 for tokens that are **not masked**,
|
1287 |
+
- 0 for tokens that are **masked**.
|
1288 |
+
|
1289 |
+
[What are attention masks?](../glossary#attention-mask)
|
1290 |
+
|
1291 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1292 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1293 |
+
|
1294 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1295 |
+
`past_key_values`).
|
1296 |
+
|
1297 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1298 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1299 |
+
information on the default strategy.
|
1300 |
+
|
1301 |
+
- 1 indicates the head is **not masked**,
|
1302 |
+
- 0 indicates the head is **masked**.
|
1303 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1304 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1305 |
+
config.n_positions - 1]`.
|
1306 |
+
|
1307 |
+
[What are position IDs?](../glossary#position-ids)
|
1308 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1309 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1310 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1311 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1312 |
+
|
1313 |
+
Two formats are allowed:
|
1314 |
+
- a [`~cache_utils.Cache`] instance;
|
1315 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1316 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1317 |
+
cache format.
|
1318 |
+
|
1319 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1320 |
+
legacy cache format will be returned.
|
1321 |
+
|
1322 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1323 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1324 |
+
of shape `(batch_size, sequence_length)`.
|
1325 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1326 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1327 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1328 |
+
model's internal embedding lookup matrix.
|
1329 |
+
use_cache (`bool`, *optional*):
|
1330 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1331 |
+
`past_key_values`).
|
1332 |
+
output_attentions (`bool`, *optional*):
|
1333 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1334 |
+
tensors for more detail.
|
1335 |
+
output_hidden_states (`bool`, *optional*):
|
1336 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1337 |
+
more detail.
|
1338 |
+
return_dict (`bool`, *optional*):
|
1339 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1340 |
+
"""
|
1341 |
+
|
1342 |
+
|
1343 |
+
@add_start_docstrings(
|
1344 |
+
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
|
1345 |
+
DeepseekV3_START_DOCSTRING,
|
1346 |
+
)
|
1347 |
+
class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
1348 |
+
"""
|
1349 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
|
1350 |
+
|
1351 |
+
Args:
|
1352 |
+
config: DeepseekV3Config
|
1353 |
+
"""
|
1354 |
+
|
1355 |
+
def __init__(self, config: DeepseekV3Config):
|
1356 |
+
super().__init__(config)
|
1357 |
+
self.padding_idx = config.pad_token_id
|
1358 |
+
self.vocab_size = config.vocab_size
|
1359 |
+
|
1360 |
+
self.embed_tokens = nn.Embedding(
|
1361 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
1362 |
+
)
|
1363 |
+
self.layers = nn.ModuleList(
|
1364 |
+
[
|
1365 |
+
DeepseekV3DecoderLayer(config, layer_idx)
|
1366 |
+
for layer_idx in range(config.num_hidden_layers)
|
1367 |
+
]
|
1368 |
+
)
|
1369 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1370 |
+
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1371 |
+
|
1372 |
+
self.gradient_checkpointing = False
|
1373 |
+
# Initialize weights and apply final processing
|
1374 |
+
self.post_init()
|
1375 |
+
|
1376 |
+
def get_input_embeddings(self):
|
1377 |
+
return self.embed_tokens
|
1378 |
+
|
1379 |
+
def set_input_embeddings(self, value):
|
1380 |
+
self.embed_tokens = value
|
1381 |
+
|
1382 |
+
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
|
1383 |
+
def forward(
|
1384 |
+
self,
|
1385 |
+
input_ids: torch.LongTensor = None,
|
1386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1387 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1388 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1389 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1390 |
+
use_cache: Optional[bool] = None,
|
1391 |
+
output_attentions: Optional[bool] = None,
|
1392 |
+
output_hidden_states: Optional[bool] = None,
|
1393 |
+
return_dict: Optional[bool] = None,
|
1394 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1395 |
+
output_attentions = (
|
1396 |
+
output_attentions
|
1397 |
+
if output_attentions is not None
|
1398 |
+
else self.config.output_attentions
|
1399 |
+
)
|
1400 |
+
output_hidden_states = (
|
1401 |
+
output_hidden_states
|
1402 |
+
if output_hidden_states is not None
|
1403 |
+
else self.config.output_hidden_states
|
1404 |
+
)
|
1405 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1406 |
+
|
1407 |
+
return_dict = (
|
1408 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
# retrieve input_ids and inputs_embeds
|
1412 |
+
if input_ids is not None and inputs_embeds is not None:
|
1413 |
+
raise ValueError(
|
1414 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1415 |
+
)
|
1416 |
+
elif input_ids is not None:
|
1417 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1418 |
+
elif inputs_embeds is not None:
|
1419 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1420 |
+
else:
|
1421 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1422 |
+
|
1423 |
+
past_key_values_length = 0
|
1424 |
+
if use_cache:
|
1425 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1426 |
+
if use_legacy_cache:
|
1427 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1428 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1429 |
+
|
1430 |
+
if position_ids is None:
|
1431 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1432 |
+
position_ids = torch.arange(
|
1433 |
+
past_key_values_length,
|
1434 |
+
seq_length + past_key_values_length,
|
1435 |
+
dtype=torch.long,
|
1436 |
+
device=device,
|
1437 |
+
)
|
1438 |
+
position_ids = position_ids.unsqueeze(0)
|
1439 |
+
|
1440 |
+
if inputs_embeds is None:
|
1441 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1442 |
+
|
1443 |
+
if self._use_flash_attention_2:
|
1444 |
+
# 2d mask is passed through the layers
|
1445 |
+
attention_mask = (
|
1446 |
+
attention_mask
|
1447 |
+
if (attention_mask is not None and 0 in attention_mask)
|
1448 |
+
else None
|
1449 |
+
)
|
1450 |
+
else:
|
1451 |
+
# 4d mask is passed through the layers
|
1452 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1453 |
+
attention_mask,
|
1454 |
+
(batch_size, seq_length),
|
1455 |
+
inputs_embeds,
|
1456 |
+
past_key_values_length,
|
1457 |
+
)
|
1458 |
+
|
1459 |
+
# embed positions
|
1460 |
+
hidden_states = inputs_embeds
|
1461 |
+
|
1462 |
+
# decoder layers
|
1463 |
+
all_hidden_states = () if output_hidden_states else None
|
1464 |
+
all_self_attns = () if output_attentions else None
|
1465 |
+
next_decoder_cache = None
|
1466 |
+
|
1467 |
+
for decoder_layer in self.layers:
|
1468 |
+
if output_hidden_states:
|
1469 |
+
all_hidden_states += (hidden_states,)
|
1470 |
+
|
1471 |
+
layer_outputs = decoder_layer(
|
1472 |
+
hidden_states,
|
1473 |
+
attention_mask=attention_mask,
|
1474 |
+
position_ids=position_ids,
|
1475 |
+
past_key_value=past_key_values,
|
1476 |
+
output_attentions=output_attentions,
|
1477 |
+
use_cache=use_cache,
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
hidden_states = layer_outputs[0]
|
1481 |
+
|
1482 |
+
if use_cache:
|
1483 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1484 |
+
|
1485 |
+
if output_attentions:
|
1486 |
+
all_self_attns += (layer_outputs[1],)
|
1487 |
+
|
1488 |
+
hidden_states = self.norm(hidden_states)
|
1489 |
+
|
1490 |
+
# add hidden states from the last decoder layer
|
1491 |
+
if output_hidden_states:
|
1492 |
+
all_hidden_states += (hidden_states,)
|
1493 |
+
|
1494 |
+
next_cache = None
|
1495 |
+
if use_cache:
|
1496 |
+
next_cache = (
|
1497 |
+
next_decoder_cache.to_legacy_cache()
|
1498 |
+
if use_legacy_cache
|
1499 |
+
else next_decoder_cache
|
1500 |
+
)
|
1501 |
+
if not return_dict:
|
1502 |
+
return tuple(
|
1503 |
+
v
|
1504 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1505 |
+
if v is not None
|
1506 |
+
)
|
1507 |
+
return BaseModelOutputWithPast(
|
1508 |
+
last_hidden_state=hidden_states,
|
1509 |
+
past_key_values=next_cache,
|
1510 |
+
hidden_states=all_hidden_states,
|
1511 |
+
attentions=all_self_attns,
|
1512 |
+
)
|
1513 |
+
|
1514 |
+
|
1515 |
+
class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
|
1516 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1517 |
+
|
1518 |
+
def __init__(self, config):
|
1519 |
+
super().__init__(config)
|
1520 |
+
self.model = DeepseekV3Model(config)
|
1521 |
+
self.vocab_size = config.vocab_size
|
1522 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1523 |
+
|
1524 |
+
# Initialize weights and apply final processing
|
1525 |
+
self.post_init()
|
1526 |
+
|
1527 |
+
def get_input_embeddings(self):
|
1528 |
+
return self.model.embed_tokens
|
1529 |
+
|
1530 |
+
def set_input_embeddings(self, value):
|
1531 |
+
self.model.embed_tokens = value
|
1532 |
+
|
1533 |
+
def get_output_embeddings(self):
|
1534 |
+
return self.lm_head
|
1535 |
+
|
1536 |
+
def set_output_embeddings(self, new_embeddings):
|
1537 |
+
self.lm_head = new_embeddings
|
1538 |
+
|
1539 |
+
def set_decoder(self, decoder):
|
1540 |
+
self.model = decoder
|
1541 |
+
|
1542 |
+
def get_decoder(self):
|
1543 |
+
return self.model
|
1544 |
+
|
1545 |
+
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
|
1546 |
+
@replace_return_docstrings(
|
1547 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1548 |
+
)
|
1549 |
+
def forward(
|
1550 |
+
self,
|
1551 |
+
input_ids: torch.LongTensor = None,
|
1552 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1553 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1554 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1555 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1556 |
+
labels: Optional[torch.LongTensor] = None,
|
1557 |
+
use_cache: Optional[bool] = None,
|
1558 |
+
output_attentions: Optional[bool] = None,
|
1559 |
+
output_hidden_states: Optional[bool] = None,
|
1560 |
+
return_dict: Optional[bool] = None,
|
1561 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1562 |
+
r"""
|
1563 |
+
Args:
|
1564 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1565 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
1566 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1567 |
+
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
1568 |
+
|
1569 |
+
Returns:
|
1570 |
+
|
1571 |
+
Example:
|
1572 |
+
|
1573 |
+
```python
|
1574 |
+
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
|
1575 |
+
|
1576 |
+
>>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1577 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1578 |
+
|
1579 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1580 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1581 |
+
|
1582 |
+
>>> # Generate
|
1583 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1584 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1585 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1586 |
+
```"""
|
1587 |
+
output_attentions = (
|
1588 |
+
output_attentions
|
1589 |
+
if output_attentions is not None
|
1590 |
+
else self.config.output_attentions
|
1591 |
+
)
|
1592 |
+
output_hidden_states = (
|
1593 |
+
output_hidden_states
|
1594 |
+
if output_hidden_states is not None
|
1595 |
+
else self.config.output_hidden_states
|
1596 |
+
)
|
1597 |
+
return_dict = (
|
1598 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1602 |
+
outputs = self.model(
|
1603 |
+
input_ids=input_ids,
|
1604 |
+
attention_mask=attention_mask,
|
1605 |
+
position_ids=position_ids,
|
1606 |
+
past_key_values=past_key_values,
|
1607 |
+
inputs_embeds=inputs_embeds,
|
1608 |
+
use_cache=use_cache,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
hidden_states = outputs[0]
|
1615 |
+
logits = self.lm_head(hidden_states)
|
1616 |
+
logits = logits.float()
|
1617 |
+
|
1618 |
+
loss = None
|
1619 |
+
if labels is not None:
|
1620 |
+
# Shift so that tokens < n predict n
|
1621 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1622 |
+
shift_labels = labels[..., 1:].contiguous()
|
1623 |
+
# Flatten the tokens
|
1624 |
+
loss_fct = CrossEntropyLoss()
|
1625 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1626 |
+
shift_labels = shift_labels.view(-1)
|
1627 |
+
# Enable model parallelism
|
1628 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1629 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1630 |
+
|
1631 |
+
if not return_dict:
|
1632 |
+
output = (logits,) + outputs[1:]
|
1633 |
+
return (loss,) + output if loss is not None else output
|
1634 |
+
|
1635 |
+
return CausalLMOutputWithPast(
|
1636 |
+
loss=loss,
|
1637 |
+
logits=logits,
|
1638 |
+
past_key_values=outputs.past_key_values,
|
1639 |
+
hidden_states=outputs.hidden_states,
|
1640 |
+
attentions=outputs.attentions,
|
1641 |
+
)
|
1642 |
+
|
1643 |
+
def prepare_inputs_for_generation(
|
1644 |
+
self,
|
1645 |
+
input_ids,
|
1646 |
+
past_key_values=None,
|
1647 |
+
attention_mask=None,
|
1648 |
+
inputs_embeds=None,
|
1649 |
+
**kwargs,
|
1650 |
+
):
|
1651 |
+
if past_key_values is not None:
|
1652 |
+
if isinstance(past_key_values, Cache):
|
1653 |
+
cache_length = past_key_values.get_seq_length()
|
1654 |
+
past_length = past_key_values.seen_tokens
|
1655 |
+
max_cache_length = past_key_values.get_max_length()
|
1656 |
+
else:
|
1657 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1658 |
+
max_cache_length = None
|
1659 |
+
|
1660 |
+
# Keep only the unprocessed tokens:
|
1661 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1662 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1663 |
+
# input)
|
1664 |
+
if (
|
1665 |
+
attention_mask is not None
|
1666 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1667 |
+
):
|
1668 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1669 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1670 |
+
# input_ids based on the past_length.
|
1671 |
+
elif past_length < input_ids.shape[1]:
|
1672 |
+
input_ids = input_ids[:, past_length:]
|
1673 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1674 |
+
|
1675 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1676 |
+
if (
|
1677 |
+
max_cache_length is not None
|
1678 |
+
and attention_mask is not None
|
1679 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1680 |
+
):
|
1681 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1682 |
+
|
1683 |
+
position_ids = kwargs.get("position_ids", None)
|
1684 |
+
if attention_mask is not None and position_ids is None:
|
1685 |
+
# create position_ids on the fly for batch generation
|
1686 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1687 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1688 |
+
if past_key_values:
|
1689 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1690 |
+
|
1691 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1692 |
+
if inputs_embeds is not None and past_key_values is None:
|
1693 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1694 |
+
else:
|
1695 |
+
model_inputs = {"input_ids": input_ids}
|
1696 |
+
|
1697 |
+
model_inputs.update(
|
1698 |
+
{
|
1699 |
+
"position_ids": position_ids,
|
1700 |
+
"past_key_values": past_key_values,
|
1701 |
+
"use_cache": kwargs.get("use_cache"),
|
1702 |
+
"attention_mask": attention_mask,
|
1703 |
+
}
|
1704 |
+
)
|
1705 |
+
return model_inputs
|
1706 |
+
|
1707 |
+
@staticmethod
|
1708 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1709 |
+
reordered_past = ()
|
1710 |
+
for layer_past in past_key_values:
|
1711 |
+
reordered_past += (
|
1712 |
+
tuple(
|
1713 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1714 |
+
for past_state in layer_past
|
1715 |
+
),
|
1716 |
+
)
|
1717 |
+
return reordered_past
|
1718 |
+
|
1719 |
+
|
1720 |
+
@add_start_docstrings(
|
1721 |
+
"""
|
1722 |
+
The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
|
1723 |
+
|
1724 |
+
[`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1725 |
+
(e.g. GPT-2) do.
|
1726 |
+
|
1727 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1728 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1729 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1730 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1731 |
+
each row of the batch).
|
1732 |
+
""",
|
1733 |
+
DeepseekV3_START_DOCSTRING,
|
1734 |
+
)
|
1735 |
+
class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
1736 |
+
def __init__(self, config):
|
1737 |
+
super().__init__(config)
|
1738 |
+
self.num_labels = config.num_labels
|
1739 |
+
self.model = DeepseekV3Model(config)
|
1740 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1741 |
+
|
1742 |
+
# Initialize weights and apply final processing
|
1743 |
+
self.post_init()
|
1744 |
+
|
1745 |
+
def get_input_embeddings(self):
|
1746 |
+
return self.model.embed_tokens
|
1747 |
+
|
1748 |
+
def set_input_embeddings(self, value):
|
1749 |
+
self.model.embed_tokens = value
|
1750 |
+
|
1751 |
+
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
|
1752 |
+
def forward(
|
1753 |
+
self,
|
1754 |
+
input_ids: torch.LongTensor = None,
|
1755 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1756 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1757 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1758 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1759 |
+
labels: Optional[torch.LongTensor] = None,
|
1760 |
+
use_cache: Optional[bool] = None,
|
1761 |
+
output_attentions: Optional[bool] = None,
|
1762 |
+
output_hidden_states: Optional[bool] = None,
|
1763 |
+
return_dict: Optional[bool] = None,
|
1764 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1765 |
+
r"""
|
1766 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1767 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
|
1768 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1769 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1770 |
+
"""
|
1771 |
+
return_dict = (
|
1772 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1773 |
+
)
|
1774 |
+
|
1775 |
+
transformer_outputs = self.model(
|
1776 |
+
input_ids,
|
1777 |
+
attention_mask=attention_mask,
|
1778 |
+
position_ids=position_ids,
|
1779 |
+
past_key_values=past_key_values,
|
1780 |
+
inputs_embeds=inputs_embeds,
|
1781 |
+
use_cache=use_cache,
|
1782 |
+
output_attentions=output_attentions,
|
1783 |
+
output_hidden_states=output_hidden_states,
|
1784 |
+
return_dict=return_dict,
|
1785 |
+
)
|
1786 |
+
hidden_states = transformer_outputs[0]
|
1787 |
+
logits = self.score(hidden_states)
|
1788 |
+
|
1789 |
+
if input_ids is not None:
|
1790 |
+
batch_size = input_ids.shape[0]
|
1791 |
+
else:
|
1792 |
+
batch_size = inputs_embeds.shape[0]
|
1793 |
+
|
1794 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1795 |
+
raise ValueError(
|
1796 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1797 |
+
)
|
1798 |
+
if self.config.pad_token_id is None:
|
1799 |
+
sequence_lengths = -1
|
1800 |
+
else:
|
1801 |
+
if input_ids is not None:
|
1802 |
+
sequence_lengths = (
|
1803 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1804 |
+
).to(logits.device)
|
1805 |
+
else:
|
1806 |
+
sequence_lengths = -1
|
1807 |
+
|
1808 |
+
pooled_logits = logits[
|
1809 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1810 |
+
]
|
1811 |
+
|
1812 |
+
loss = None
|
1813 |
+
if labels is not None:
|
1814 |
+
labels = labels.to(logits.device)
|
1815 |
+
if self.config.problem_type is None:
|
1816 |
+
if self.num_labels == 1:
|
1817 |
+
self.config.problem_type = "regression"
|
1818 |
+
elif self.num_labels > 1 and (
|
1819 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1820 |
+
):
|
1821 |
+
self.config.problem_type = "single_label_classification"
|
1822 |
+
else:
|
1823 |
+
self.config.problem_type = "multi_label_classification"
|
1824 |
+
|
1825 |
+
if self.config.problem_type == "regression":
|
1826 |
+
loss_fct = MSELoss()
|
1827 |
+
if self.num_labels == 1:
|
1828 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1829 |
+
else:
|
1830 |
+
loss = loss_fct(pooled_logits, labels)
|
1831 |
+
elif self.config.problem_type == "single_label_classification":
|
1832 |
+
loss_fct = CrossEntropyLoss()
|
1833 |
+
loss = loss_fct(
|
1834 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1835 |
+
)
|
1836 |
+
elif self.config.problem_type == "multi_label_classification":
|
1837 |
+
loss_fct = BCEWithLogitsLoss()
|
1838 |
+
loss = loss_fct(pooled_logits, labels)
|
1839 |
+
if not return_dict:
|
1840 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1841 |
+
return ((loss,) + output) if loss is not None else output
|
1842 |
+
|
1843 |
+
return SequenceClassifierOutputWithPast(
|
1844 |
+
loss=loss,
|
1845 |
+
logits=pooled_logits,
|
1846 |
+
past_key_values=transformer_outputs.past_key_values,
|
1847 |
+
hidden_states=transformer_outputs.hidden_states,
|
1848 |
+
attentions=transformer_outputs.attentions,
|
1849 |
+
)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|begin▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 131072,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<|end▁of▁sentence|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"unk_token": null,
|
33 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
34 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{{'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
|
35 |
+
}
|