---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:354235
- loss:CategoricalContrastiveLoss
widget:
- source_sentence: 科目:コンクリート。名称:免震上部コンクリート打設手間。
sentences:
- 科目:コンクリート。名称:コンクリート打設。
- 科目:コンクリート。名称:基礎コンクリート。
- 科目:コンクリート。名称:オイルタンク基礎コンクリート。
- source_sentence: 科目:コンクリート。名称:EXP_J充填コンクリート。
sentences:
- 科目:タイル。名称:ピロティ床床タイル張り。
- 科目:タイル。名称:海街デッキ床タイル。
- 科目:コンクリート。名称:充填コンクリート(EXP_J内)。
- source_sentence: 科目:タイル。名称:汚垂タイル。
sentences:
- 科目:コンクリート。名称:保護コンクリート。
- 科目:コンクリート。名称:機械基礎コンクリート。
- 科目:タイル。名称:EV#・#床磁器質タイルA(材のみ)。
- source_sentence: 科目:タイル。名称:汚垂タイル。
sentences:
- 科目:コンクリート。名称:体育館防振床浮き床コンクリート。
- 科目:タイル。名称:EXP_J上床磁器質タイルA。
- 科目:タイル。名称:床タイルB。
- source_sentence: 科目:タイル。名称:タイル出隅コーナー。
sentences:
- 科目:タイル。名称:地流し床タイル。
- 科目:タイル。名称:海街デッキ床タイル。
- 科目:タイル。名称:段床タイル。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_8_4")
# Run inference
sentences = [
'科目:タイル。名称:タイル出隅コーナー。',
'科目:タイル。名称:段床タイル。',
'科目:タイル。名称:地流し床タイル。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 354,235 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
| type | string | string | int |
| details |
- min: 11 tokens
- mean: 13.78 tokens
- max: 19 tokens
| - min: 11 tokens
- mean: 14.8 tokens
- max: 23 tokens
| - 0: ~74.10%
- 1: ~2.60%
- 2: ~23.30%
|
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------|:-------------------------------------------------|:---------------|
| 科目:コンクリート。名称:免震基礎天端グラウト注入。
| 科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。
| 0
|
| 科目:コンクリート。名称:免震基礎天端グラウト注入。
| 科目:コンクリート。名称:免震下部コンクリート打設手間。
| 0
|
| 科目:コンクリート。名称:免震基礎天端グラウト注入。
| 科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。
| 0
|
* Loss: sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `warmup_ratio`: 0.2
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0361 | 50 | 0.0492 |
| 0.0723 | 100 | 0.0438 |
| 0.1084 | 150 | 0.0385 |
| 0.1445 | 200 | 0.0376 |
| 0.1806 | 250 | 0.0388 |
| 0.2168 | 300 | 0.0391 |
| 0.2529 | 350 | 0.0337 |
| 0.2890 | 400 | 0.0354 |
| 0.3251 | 450 | 0.0322 |
| 0.3613 | 500 | 0.0345 |
| 0.3974 | 550 | 0.0278 |
| 0.4335 | 600 | 0.0282 |
| 0.4697 | 650 | 0.0261 |
| 0.5058 | 700 | 0.0284 |
| 0.5419 | 750 | 0.0264 |
| 0.5780 | 800 | 0.0251 |
| 0.6142 | 850 | 0.02 |
| 0.6503 | 900 | 0.0253 |
| 0.6864 | 950 | 0.0197 |
| 0.7225 | 1000 | 0.0221 |
| 0.7587 | 1050 | 0.0204 |
| 0.7948 | 1100 | 0.0188 |
| 0.8309 | 1150 | 0.0198 |
| 0.8671 | 1200 | 0.0203 |
| 0.9032 | 1250 | 0.0177 |
| 0.9393 | 1300 | 0.0162 |
| 0.9754 | 1350 | 0.0148 |
| 1.0116 | 1400 | 0.014 |
| 1.0477 | 1450 | 0.011 |
| 1.0838 | 1500 | 0.0123 |
| 1.1199 | 1550 | 0.0126 |
| 1.1561 | 1600 | 0.01 |
| 1.1922 | 1650 | 0.0124 |
| 1.2283 | 1700 | 0.0107 |
| 1.2645 | 1750 | 0.0107 |
| 1.3006 | 1800 | 0.0118 |
| 1.3367 | 1850 | 0.0103 |
| 1.3728 | 1900 | 0.0102 |
| 1.4090 | 1950 | 0.0104 |
| 1.4451 | 2000 | 0.01 |
| 1.4812 | 2050 | 0.0101 |
| 1.5173 | 2100 | 0.0098 |
| 1.5535 | 2150 | 0.0097 |
| 1.5896 | 2200 | 0.0093 |
| 1.6257 | 2250 | 0.0088 |
| 1.6618 | 2300 | 0.0095 |
| 1.6980 | 2350 | 0.0103 |
| 1.7341 | 2400 | 0.0077 |
| 1.7702 | 2450 | 0.0085 |
| 1.8064 | 2500 | 0.0082 |
| 1.8425 | 2550 | 0.0074 |
| 1.8786 | 2600 | 0.0081 |
| 1.9147 | 2650 | 0.0067 |
| 1.9509 | 2700 | 0.0082 |
| 1.9870 | 2750 | 0.0076 |
| 2.0231 | 2800 | 0.0067 |
| 2.0592 | 2850 | 0.0056 |
| 2.0954 | 2900 | 0.0065 |
| 2.1315 | 2950 | 0.0057 |
| 2.1676 | 3000 | 0.0059 |
| 2.2038 | 3050 | 0.0047 |
| 2.2399 | 3100 | 0.0051 |
| 2.2760 | 3150 | 0.0049 |
| 2.3121 | 3200 | 0.0051 |
| 2.3483 | 3250 | 0.0049 |
| 2.3844 | 3300 | 0.0045 |
| 2.4205 | 3350 | 0.0047 |
| 2.4566 | 3400 | 0.0052 |
| 2.4928 | 3450 | 0.004 |
| 2.5289 | 3500 | 0.0057 |
| 2.5650 | 3550 | 0.0046 |
| 2.6012 | 3600 | 0.0052 |
| 2.6373 | 3650 | 0.0049 |
| 2.6734 | 3700 | 0.0046 |
| 2.7095 | 3750 | 0.0056 |
| 2.7457 | 3800 | 0.0054 |
| 2.7818 | 3850 | 0.0037 |
| 2.8179 | 3900 | 0.0044 |
| 2.8540 | 3950 | 0.0037 |
| 2.8902 | 4000 | 0.0049 |
| 2.9263 | 4050 | 0.0044 |
| 2.9624 | 4100 | 0.0046 |
| 2.9986 | 4150 | 0.0041 |
| 3.0347 | 4200 | 0.0044 |
| 3.0708 | 4250 | 0.0035 |
| 3.1069 | 4300 | 0.0029 |
| 3.1431 | 4350 | 0.0035 |
| 3.1792 | 4400 | 0.0031 |
| 3.2153 | 4450 | 0.0038 |
| 3.2514 | 4500 | 0.0039 |
| 3.2876 | 4550 | 0.0034 |
| 3.3237 | 4600 | 0.0043 |
| 3.3598 | 4650 | 0.0042 |
| 3.3960 | 4700 | 0.004 |
| 3.4321 | 4750 | 0.0028 |
| 3.4682 | 4800 | 0.0035 |
| 3.5043 | 4850 | 0.0033 |
| 3.5405 | 4900 | 0.0039 |
| 3.5766 | 4950 | 0.0045 |
| 3.6127 | 5000 | 0.0032 |
| 3.6488 | 5050 | 0.0036 |
| 3.6850 | 5100 | 0.0032 |
| 3.7211 | 5150 | 0.0031 |
| 3.7572 | 5200 | 0.0043 |
| 3.7934 | 5250 | 0.0032 |
| 3.8295 | 5300 | 0.0034 |
| 3.8656 | 5350 | 0.0029 |
| 3.9017 | 5400 | 0.0037 |
| 3.9379 | 5450 | 0.0028 |
| 3.9740 | 5500 | 0.0028 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```