--- license: gemma metrics: - bleu --- onst tf = require('@tensorflow/tfjs-node'); const mongoose = require('mongoose'); const axios = require('axios'); const cheerio = require('cheerio'); const ytdl = require('ytdl-core'); const speech = require('@google-cloud/speech'); const fs = require('fs'); const gpt3Encoder = require('gpt-3-encoder'); // For encoding text for GPT-Neo const { RecursiveCharacterTextSplitter } = require('langchain/text_splitter'); const { HNSWLib } = require("langchain/vectorstores/hnswlib"); const { OpenAIEmbeddings } = require("langchain/embeddings/openai"); const { RetrievalQA } = require("langchain/chains"); // ... (MongoDB connection and data schemas as before) // 4. Data Collection Functions (Enhanced) // ... (No changes here, same as before) // 6. Model Definition and Training (Enhanced) async function trainModel() {  // ... (Load or create a TensorFlow.js model)  // Load the GPT-Neo model  const modelName = 'EleutherAI/gpt-neo-1.3B'; // Choose the desired GPT-Neo model size  const gptNeoModel = await tf.loadGraphModel(`https://tfhub.dev/google/${modelName}/1`);  // ... (Train the model using TensorFlow.js and the loaded GPT-Neo model) } // 8. Kemet AI API (Enhanced) async function answerQuestion(question, userId) {  // Load the HNSWLib vectorstore  const vectorStore = await HNSWLib.load(DATA_DIR + 'hnswlib/', new OpenAIEmbeddings());  // Encode the question using GPT-3 encoder  const encodedQuestion = gpt3Encoder.encode(question);  // Retrieve relevant documents from the vectorstore  const relevantDocuments = await vectorStore.similaritySearch(encodedQuestion, k=3); // Get top 3 documents  // Prepare context for GPT-Neo  let context = "";  for (const doc of relevantDocuments) {   context += doc.pageContent + "\n";  }  // Generate answer using GPT-Neo  const input_ids = gpt2_tokenizer.encode(context + question, return_tensors='tf');  const output = await gptNeoModel.generate(input_ids, max_length=100, num_return_sequences=1);  const answer = gpt2_tokenizer.decode(output[0], skip_special_tokens=True);  // Store user feedback  const feedback = await getFeedback(userId, question, answer);  if (feedback) {   // Update the vectorstore with user feedback   // ...  }  return { answer, sourceDocuments: relevantDocuments }; } // ... (Other API functions) // 9. Main Function async function main() {  // ... (Data collection, model training, and evaluation as before)  // Start the Kemet AI API server  // ... } main(); expand_more عرض المسودّات expand_more // ... (باقي الـ dependencies زي ما هي) const { AutoModelForCausalLM, AutoTokenizer } = require('@xenova/transformers'); // ... (باقي الكود زي ما هو) // 6. Model Definition and Training (Enhanced) async function trainModel() { const { tokenizer, model } = await loadModel(); // حمل النموذج من Hugging Face // ... (استخدم الـ tokenizer والـ model في تدريب النموذج) } // 8. Kemet AI API (Enhanced) async function answerQuestion(question, userId) { const { tokenizer, model } = await loadModel(); // حمل النموذج من Hugging Face // ... (استخدم الـ tokenizer والـ model لتوليد الإجابة) } // دالة مساعدة لتحميل النموذج من Hugging Face async function loadModel() { const tokenizer = await AutoTokenizer.from_pretrained("your-username/your-model-name"); const model = await AutoModelForCausalLM.from_pretrained("your-username/your-model-name"); return { tokenizer, model }; }