Delta-Vector commited on
Commit
8624888
·
verified ·
1 Parent(s): b2642a8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./model",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 27648,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 64,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 64,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.49.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": 151645,
6
+ "transformers_version": "4.49.0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step379
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea4820fb1379c53257f82101456fb80ffa0ad686e7f4d2101be1d82a55e9abe6
3
+ size 4891730992
model-00002-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f10b6678bdd5b0325d0acfd804e01b0307fe4807b60ce1e422021184f8eefa5
3
+ size 4876059352
model-00003-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803ac3534b7ac607b629e89766f6caf2bd7ce8bda56351934dc9fff7f720500a
3
+ size 4876059384
model-00004-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c5692f2d456b5aab90d86bb4a85c9357cb38d2b40fc8871312e7a25701a2abb
3
+ size 4876059416
model-00005-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e452e1c589940330cd4d4fcc0b3c6ec66541a1e5aecb6b576fa054f4c963024
3
+ size 4876059416
model-00006-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6b2ca471378a8c5dfd740bd5a68244363e171cea845260188c7b9a954d3f081
3
+ size 4876059416
model-00007-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ca93426e11c7bf0499a1d6801f5444417d05c69d7260dbf9209bb8c5e3f2e99
3
+ size 4876059416
model-00008-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8936084885a8742dd8ee719115fc474c2fca7d8d50948a1206ed94d5af3504ef
3
+ size 4876059416
model-00009-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d52772d0dbd0c058bbef4c5b7921f2b6886c9095ead0eee93f3f7a373f536fa
3
+ size 4876059416
model-00010-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:865d9be31577123e6fb70065a7c2e7a6eeedbf780a0fbabe0b09a4494d2060d1
3
+ size 4876059416
model-00011-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c7d9422157230cb63f89ede398edeb93f9aa36f99a8ad3675e7790d31b601
3
+ size 4876059416
model-00012-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db19a625e1219a276a503f679ac443dad505677fb895f4d119017d3551f594d
3
+ size 4876059416
model-00013-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:712555ee9aecb2aff1895fdddbbe023805691cb126d072b03f81059c35dc3739
3
+ size 4876059416
model-00014-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61cde7c333ac18d631c24377a0cbeb84bd8d4e054e8204ff3241922d25d3132a
3
+ size 2123397800
model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 65527752704
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
776
+ "model.norm.weight": "model-00014-of-00014.safetensors"
777
+ }
778
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c15f1bc7297a28645464f9c0f3ff75c45e9552cff93fa6b52280fe689c6153ee
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,2693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9921259842519685,
5
+ "eval_steps": 500,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005249343832020997,
13
+ "grad_norm": 4.262586140207107,
14
+ "learning_rate": 1.2500000000000002e-07,
15
+ "loss": 1.2143,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.010498687664041995,
20
+ "grad_norm": 4.1559742669756154,
21
+ "learning_rate": 2.5000000000000004e-07,
22
+ "loss": 1.2307,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.015748031496062992,
27
+ "grad_norm": 4.2196647284049895,
28
+ "learning_rate": 3.75e-07,
29
+ "loss": 1.2286,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.02099737532808399,
34
+ "grad_norm": 4.13634077943981,
35
+ "learning_rate": 5.000000000000001e-07,
36
+ "loss": 1.2002,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.026246719160104987,
41
+ "grad_norm": 4.015668455829927,
42
+ "learning_rate": 6.25e-07,
43
+ "loss": 1.1672,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.031496062992125984,
48
+ "grad_norm": 3.832855314884781,
49
+ "learning_rate": 7.5e-07,
50
+ "loss": 1.1993,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.03674540682414698,
55
+ "grad_norm": 3.8323407788221733,
56
+ "learning_rate": 8.75e-07,
57
+ "loss": 1.1554,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.04199475065616798,
62
+ "grad_norm": 3.7465244180174917,
63
+ "learning_rate": 1.0000000000000002e-06,
64
+ "loss": 1.1672,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.047244094488188976,
69
+ "grad_norm": 3.7827251172961986,
70
+ "learning_rate": 1.125e-06,
71
+ "loss": 1.1755,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.05249343832020997,
76
+ "grad_norm": 3.470602675526565,
77
+ "learning_rate": 1.25e-06,
78
+ "loss": 1.1419,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.05774278215223097,
83
+ "grad_norm": 3.556221853917274,
84
+ "learning_rate": 1.3750000000000002e-06,
85
+ "loss": 1.194,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.06299212598425197,
90
+ "grad_norm": 3.324934060085957,
91
+ "learning_rate": 1.5e-06,
92
+ "loss": 1.1336,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.06824146981627296,
97
+ "grad_norm": 2.965981688480075,
98
+ "learning_rate": 1.6250000000000001e-06,
99
+ "loss": 1.1349,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.07349081364829396,
104
+ "grad_norm": 2.8658973663115046,
105
+ "learning_rate": 1.75e-06,
106
+ "loss": 1.1776,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.07874015748031496,
111
+ "grad_norm": 2.720689909744523,
112
+ "learning_rate": 1.8750000000000003e-06,
113
+ "loss": 1.1549,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.08398950131233596,
118
+ "grad_norm": 2.439062154183451,
119
+ "learning_rate": 2.0000000000000003e-06,
120
+ "loss": 1.141,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.08923884514435695,
125
+ "grad_norm": 2.1353279033918002,
126
+ "learning_rate": 2.125e-06,
127
+ "loss": 1.139,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.09448818897637795,
132
+ "grad_norm": 1.2092875477650313,
133
+ "learning_rate": 2.25e-06,
134
+ "loss": 1.0516,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.09973753280839895,
139
+ "grad_norm": 1.0763847439987342,
140
+ "learning_rate": 2.375e-06,
141
+ "loss": 1.0802,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.10498687664041995,
146
+ "grad_norm": 1.0340250902529846,
147
+ "learning_rate": 2.5e-06,
148
+ "loss": 1.0607,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.11023622047244094,
153
+ "grad_norm": 0.8630354040462489,
154
+ "learning_rate": 2.6250000000000003e-06,
155
+ "loss": 1.0496,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.11548556430446194,
160
+ "grad_norm": 0.8072735722523627,
161
+ "learning_rate": 2.7500000000000004e-06,
162
+ "loss": 1.08,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.12073490813648294,
167
+ "grad_norm": 0.7305262800316248,
168
+ "learning_rate": 2.875e-06,
169
+ "loss": 1.0539,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.12598425196850394,
174
+ "grad_norm": 0.7406394208995156,
175
+ "learning_rate": 3e-06,
176
+ "loss": 1.0529,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.13123359580052493,
181
+ "grad_norm": 0.7903255346265977,
182
+ "learning_rate": 3.125e-06,
183
+ "loss": 0.9914,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.13648293963254593,
188
+ "grad_norm": 0.8017049075586423,
189
+ "learning_rate": 3.2500000000000002e-06,
190
+ "loss": 1.0313,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.14173228346456693,
195
+ "grad_norm": 0.7764417012146556,
196
+ "learning_rate": 3.3750000000000003e-06,
197
+ "loss": 1.0422,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.14698162729658792,
202
+ "grad_norm": 0.7112571206699242,
203
+ "learning_rate": 3.5e-06,
204
+ "loss": 1.0187,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.15223097112860892,
209
+ "grad_norm": 0.6069574236656299,
210
+ "learning_rate": 3.625e-06,
211
+ "loss": 0.9958,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.15748031496062992,
216
+ "grad_norm": 0.5747553586770598,
217
+ "learning_rate": 3.7500000000000005e-06,
218
+ "loss": 0.9858,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.16272965879265092,
223
+ "grad_norm": 0.590510044443011,
224
+ "learning_rate": 3.875e-06,
225
+ "loss": 0.9841,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1679790026246719,
230
+ "grad_norm": 0.5240510507345066,
231
+ "learning_rate": 4.000000000000001e-06,
232
+ "loss": 1.0171,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1732283464566929,
237
+ "grad_norm": 0.4913378134702597,
238
+ "learning_rate": 4.125e-06,
239
+ "loss": 1.0218,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1784776902887139,
244
+ "grad_norm": 0.47909247638813307,
245
+ "learning_rate": 4.25e-06,
246
+ "loss": 1.02,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.1837270341207349,
251
+ "grad_norm": 0.4949722185401137,
252
+ "learning_rate": 4.3750000000000005e-06,
253
+ "loss": 1.0206,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1889763779527559,
258
+ "grad_norm": 0.48456911030733396,
259
+ "learning_rate": 4.5e-06,
260
+ "loss": 1.0321,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.1942257217847769,
265
+ "grad_norm": 0.49965866704889284,
266
+ "learning_rate": 4.625000000000001e-06,
267
+ "loss": 1.0184,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1994750656167979,
272
+ "grad_norm": 0.4898360279427832,
273
+ "learning_rate": 4.75e-06,
274
+ "loss": 1.0165,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.2047244094488189,
279
+ "grad_norm": 0.5039246597121783,
280
+ "learning_rate": 4.875e-06,
281
+ "loss": 0.9811,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.2099737532808399,
286
+ "grad_norm": 0.462371012430454,
287
+ "learning_rate": 5e-06,
288
+ "loss": 0.9999,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.2152230971128609,
293
+ "grad_norm": 0.4564370676360458,
294
+ "learning_rate": 4.99989327925842e-06,
295
+ "loss": 1.0056,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.2204724409448819,
300
+ "grad_norm": 0.4838548423542603,
301
+ "learning_rate": 4.999573126145132e-06,
302
+ "loss": 1.0099,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.22572178477690288,
307
+ "grad_norm": 0.47657399375831033,
308
+ "learning_rate": 4.999039567993719e-06,
309
+ "loss": 1.0059,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.23097112860892388,
314
+ "grad_norm": 0.4609228968128241,
315
+ "learning_rate": 4.998292650357558e-06,
316
+ "loss": 0.9613,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.23622047244094488,
321
+ "grad_norm": 0.5379441335347738,
322
+ "learning_rate": 4.997332437005932e-06,
323
+ "loss": 0.9912,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.24146981627296588,
328
+ "grad_norm": 0.4488276134846175,
329
+ "learning_rate": 4.996159009918586e-06,
330
+ "loss": 0.9623,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.24671916010498687,
335
+ "grad_norm": 0.7899879742350473,
336
+ "learning_rate": 4.994772469278726e-06,
337
+ "loss": 0.9373,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.25196850393700787,
342
+ "grad_norm": 0.45351107525432893,
343
+ "learning_rate": 4.99317293346447e-06,
344
+ "loss": 0.9312,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.2572178477690289,
349
+ "grad_norm": 0.4145057356223518,
350
+ "learning_rate": 4.991360539038737e-06,
351
+ "loss": 0.9133,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.26246719160104987,
356
+ "grad_norm": 0.4371226648356658,
357
+ "learning_rate": 4.989335440737587e-06,
358
+ "loss": 0.9763,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.2677165354330709,
363
+ "grad_norm": 0.49987252416920314,
364
+ "learning_rate": 4.987097811457015e-06,
365
+ "loss": 0.9753,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.27296587926509186,
370
+ "grad_norm": 0.4737378597917066,
371
+ "learning_rate": 4.984647842238185e-06,
372
+ "loss": 0.9509,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.2782152230971129,
377
+ "grad_norm": 0.4803218242006868,
378
+ "learning_rate": 4.981985742251123e-06,
379
+ "loss": 1.0008,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.28346456692913385,
384
+ "grad_norm": 0.4238793960297473,
385
+ "learning_rate": 4.9791117387768575e-06,
386
+ "loss": 1.0024,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.2887139107611549,
391
+ "grad_norm": 0.4135698693902407,
392
+ "learning_rate": 4.976026077188013e-06,
393
+ "loss": 0.9208,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.29396325459317585,
398
+ "grad_norm": 0.49893312330659967,
399
+ "learning_rate": 4.972729020927866e-06,
400
+ "loss": 0.9771,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.2992125984251969,
405
+ "grad_norm": 0.43878390791709027,
406
+ "learning_rate": 4.9692208514878445e-06,
407
+ "loss": 0.937,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.30446194225721784,
412
+ "grad_norm": 0.42250251333050837,
413
+ "learning_rate": 4.965501868383507e-06,
414
+ "loss": 0.9287,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.30971128608923887,
419
+ "grad_norm": 0.42426620742455357,
420
+ "learning_rate": 4.961572389128959e-06,
421
+ "loss": 0.9374,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.31496062992125984,
426
+ "grad_norm": 0.4622588583575654,
427
+ "learning_rate": 4.957432749209755e-06,
428
+ "loss": 0.99,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.32020997375328086,
433
+ "grad_norm": 0.4324798534582787,
434
+ "learning_rate": 4.953083302054247e-06,
435
+ "loss": 1.0035,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.32545931758530183,
440
+ "grad_norm": 0.4303590460079348,
441
+ "learning_rate": 4.948524419003415e-06,
442
+ "loss": 0.9585,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.33070866141732286,
447
+ "grad_norm": 0.42861048906851473,
448
+ "learning_rate": 4.943756489279164e-06,
449
+ "loss": 0.9772,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.3359580052493438,
454
+ "grad_norm": 0.4115697149677722,
455
+ "learning_rate": 4.938779919951092e-06,
456
+ "loss": 0.9426,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.34120734908136485,
461
+ "grad_norm": 0.417300147661056,
462
+ "learning_rate": 4.933595135901733e-06,
463
+ "loss": 0.9447,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.3464566929133858,
468
+ "grad_norm": 0.4040601468423496,
469
+ "learning_rate": 4.928202579790285e-06,
470
+ "loss": 0.966,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.35170603674540685,
475
+ "grad_norm": 0.3677161548087925,
476
+ "learning_rate": 4.9226027120148195e-06,
477
+ "loss": 0.941,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.3569553805774278,
482
+ "grad_norm": 0.3832286188469758,
483
+ "learning_rate": 4.916796010672969e-06,
484
+ "loss": 0.9822,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.36220472440944884,
489
+ "grad_norm": 0.4345291089971557,
490
+ "learning_rate": 4.910782971521112e-06,
491
+ "loss": 0.9687,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.3674540682414698,
496
+ "grad_norm": 0.4133843702108161,
497
+ "learning_rate": 4.904564107932048e-06,
498
+ "loss": 0.9283,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.37270341207349084,
503
+ "grad_norm": 0.38465081625519515,
504
+ "learning_rate": 4.898139950851163e-06,
505
+ "loss": 0.9479,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.3779527559055118,
510
+ "grad_norm": 0.424340283488392,
511
+ "learning_rate": 4.891511048751102e-06,
512
+ "loss": 0.9593,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.38320209973753283,
517
+ "grad_norm": 0.40638719244646565,
518
+ "learning_rate": 4.884677967584945e-06,
519
+ "loss": 0.9264,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.3884514435695538,
524
+ "grad_norm": 0.4168684939745582,
525
+ "learning_rate": 4.8776412907378845e-06,
526
+ "loss": 0.9399,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.3937007874015748,
531
+ "grad_norm": 0.3928820462579945,
532
+ "learning_rate": 4.870401618977415e-06,
533
+ "loss": 0.9736,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.3989501312335958,
538
+ "grad_norm": 0.48005159652101537,
539
+ "learning_rate": 4.86295957040205e-06,
540
+ "loss": 0.9935,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.4041994750656168,
545
+ "grad_norm": 0.4229896582271501,
546
+ "learning_rate": 4.855315780388541e-06,
547
+ "loss": 0.9358,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.4094488188976378,
552
+ "grad_norm": 0.4258651800976577,
553
+ "learning_rate": 4.847470901537642e-06,
554
+ "loss": 0.9583,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.4146981627296588,
559
+ "grad_norm": 0.4069975102427097,
560
+ "learning_rate": 4.839425603618382e-06,
561
+ "loss": 0.9237,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.4199475065616798,
566
+ "grad_norm": 0.3853018091795304,
567
+ "learning_rate": 4.83118057351089e-06,
568
+ "loss": 0.9528,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.4251968503937008,
573
+ "grad_norm": 0.41640976933906576,
574
+ "learning_rate": 4.822736515147748e-06,
575
+ "loss": 0.9281,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.4304461942257218,
580
+ "grad_norm": 0.4341414623727107,
581
+ "learning_rate": 4.814094149453891e-06,
582
+ "loss": 0.983,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.4356955380577428,
587
+ "grad_norm": 0.41893835966431175,
588
+ "learning_rate": 4.805254214285061e-06,
589
+ "loss": 0.9691,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.4409448818897638,
594
+ "grad_norm": 0.3778203088676148,
595
+ "learning_rate": 4.796217464364808e-06,
596
+ "loss": 0.9386,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.4461942257217848,
601
+ "grad_norm": 0.4049971835755209,
602
+ "learning_rate": 4.786984671220053e-06,
603
+ "loss": 0.9604,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.45144356955380577,
608
+ "grad_norm": 0.39430021496671025,
609
+ "learning_rate": 4.7775566231152216e-06,
610
+ "loss": 0.9625,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.4566929133858268,
615
+ "grad_norm": 0.4303135030837173,
616
+ "learning_rate": 4.767934124984941e-06,
617
+ "loss": 0.9421,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.46194225721784776,
622
+ "grad_norm": 0.4037289734626591,
623
+ "learning_rate": 4.7581179983653224e-06,
624
+ "loss": 0.9395,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.4671916010498688,
629
+ "grad_norm": 0.389977925556389,
630
+ "learning_rate": 4.7481090813238145e-06,
631
+ "loss": 0.9494,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.47244094488188976,
636
+ "grad_norm": 0.4221791671439025,
637
+ "learning_rate": 4.737908228387656e-06,
638
+ "loss": 0.9236,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.4776902887139108,
643
+ "grad_norm": 0.38571752654505004,
644
+ "learning_rate": 4.72751631047092e-06,
645
+ "loss": 0.9836,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.48293963254593175,
650
+ "grad_norm": 0.3756683416227555,
651
+ "learning_rate": 4.716934214800155e-06,
652
+ "loss": 0.9847,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.4881889763779528,
657
+ "grad_norm": 0.43805821160946656,
658
+ "learning_rate": 4.70616284483864e-06,
659
+ "loss": 0.9759,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.49343832020997375,
664
+ "grad_norm": 0.42186430904629324,
665
+ "learning_rate": 4.695203120209245e-06,
666
+ "loss": 0.9381,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.49868766404199477,
671
+ "grad_norm": 0.3816672833085737,
672
+ "learning_rate": 4.684055976615924e-06,
673
+ "loss": 0.9381,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.5039370078740157,
678
+ "grad_norm": 0.4151475033902527,
679
+ "learning_rate": 4.672722365763821e-06,
680
+ "loss": 0.9449,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.5091863517060368,
685
+ "grad_norm": 0.39782263887391656,
686
+ "learning_rate": 4.66120325527802e-06,
687
+ "loss": 0.9617,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.5144356955380578,
692
+ "grad_norm": 0.40910931809868095,
693
+ "learning_rate": 4.649499628620931e-06,
694
+ "loss": 0.9334,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.5196850393700787,
699
+ "grad_norm": 0.3910070221772484,
700
+ "learning_rate": 4.637612485008328e-06,
701
+ "loss": 0.9344,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.5249343832020997,
706
+ "grad_norm": 0.3983780342477285,
707
+ "learning_rate": 4.625542839324036e-06,
708
+ "loss": 0.9201,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.5301837270341208,
713
+ "grad_norm": 0.41440216503056093,
714
+ "learning_rate": 4.613291722033285e-06,
715
+ "loss": 0.9854,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.5354330708661418,
720
+ "grad_norm": 0.399617487921351,
721
+ "learning_rate": 4.600860179094732e-06,
722
+ "loss": 0.9317,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.5406824146981627,
727
+ "grad_norm": 0.38269422826680943,
728
+ "learning_rate": 4.588249271871164e-06,
729
+ "loss": 0.9026,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.5459317585301837,
734
+ "grad_norm": 0.4161308186315819,
735
+ "learning_rate": 4.575460077038877e-06,
736
+ "loss": 0.9402,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.5511811023622047,
741
+ "grad_norm": 0.38768080702286994,
742
+ "learning_rate": 4.562493686495756e-06,
743
+ "loss": 0.9276,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.5564304461942258,
748
+ "grad_norm": 0.4454064598197059,
749
+ "learning_rate": 4.5493512072680535e-06,
750
+ "loss": 0.9452,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.5616797900262467,
755
+ "grad_norm": 0.3695333796660741,
756
+ "learning_rate": 4.536033761415871e-06,
757
+ "loss": 0.9493,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.5669291338582677,
762
+ "grad_norm": 0.4111826761670116,
763
+ "learning_rate": 4.522542485937369e-06,
764
+ "loss": 0.9109,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.5721784776902887,
769
+ "grad_norm": 0.384299356893817,
770
+ "learning_rate": 4.508878532671684e-06,
771
+ "loss": 0.938,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.5774278215223098,
776
+ "grad_norm": 0.39579785919606036,
777
+ "learning_rate": 4.4950430682005995e-06,
778
+ "loss": 0.924,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.5826771653543307,
783
+ "grad_norm": 0.40856237862457445,
784
+ "learning_rate": 4.481037273748935e-06,
785
+ "loss": 0.9092,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.5879265091863517,
790
+ "grad_norm": 0.38651275760437465,
791
+ "learning_rate": 4.4668623450837085e-06,
792
+ "loss": 0.9311,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.5931758530183727,
797
+ "grad_norm": 0.378464413540759,
798
+ "learning_rate": 4.452519492412039e-06,
799
+ "loss": 0.9255,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.5984251968503937,
804
+ "grad_norm": 0.3779607392785478,
805
+ "learning_rate": 4.438009940277825e-06,
806
+ "loss": 0.9024,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.6036745406824147,
811
+ "grad_norm": 0.410919812420786,
812
+ "learning_rate": 4.423334927457198e-06,
813
+ "loss": 0.9105,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.6089238845144357,
818
+ "grad_norm": 0.41911457133998964,
819
+ "learning_rate": 4.408495706852758e-06,
820
+ "loss": 0.9483,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.6141732283464567,
825
+ "grad_norm": 0.39458100856937656,
826
+ "learning_rate": 4.393493545386607e-06,
827
+ "loss": 0.9388,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.6194225721784777,
832
+ "grad_norm": 0.40200990450921853,
833
+ "learning_rate": 4.378329723892184e-06,
834
+ "loss": 0.927,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.6246719160104987,
839
+ "grad_norm": 0.42346347209583185,
840
+ "learning_rate": 4.3630055370049065e-06,
841
+ "loss": 0.9439,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.6299212598425197,
846
+ "grad_norm": 0.40678132773256936,
847
+ "learning_rate": 4.3475222930516484e-06,
848
+ "loss": 0.994,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.6351706036745407,
853
+ "grad_norm": 0.4215857320252809,
854
+ "learning_rate": 4.3318813139390295e-06,
855
+ "loss": 0.8946,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.6404199475065617,
860
+ "grad_norm": 0.39311078218513845,
861
+ "learning_rate": 4.316083935040561e-06,
862
+ "loss": 0.9129,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.6456692913385826,
867
+ "grad_norm": 0.38855202294392815,
868
+ "learning_rate": 4.300131505082637e-06,
869
+ "loss": 0.9229,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.6509186351706037,
874
+ "grad_norm": 0.437029643792513,
875
+ "learning_rate": 4.284025386029381e-06,
876
+ "loss": 0.9151,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.6561679790026247,
881
+ "grad_norm": 0.41975844377898647,
882
+ "learning_rate": 4.267766952966369e-06,
883
+ "loss": 0.9224,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.6614173228346457,
888
+ "grad_norm": 0.39675424131353054,
889
+ "learning_rate": 4.251357593983228e-06,
890
+ "loss": 0.9371,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.6666666666666666,
895
+ "grad_norm": 0.3980469727389334,
896
+ "learning_rate": 4.234798710055124e-06,
897
+ "loss": 0.928,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.6719160104986877,
902
+ "grad_norm": 0.3868709015712275,
903
+ "learning_rate": 4.218091714923157e-06,
904
+ "loss": 0.925,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.6771653543307087,
909
+ "grad_norm": 0.4150283358784954,
910
+ "learning_rate": 4.2012380349736544e-06,
911
+ "loss": 0.9632,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.6824146981627297,
916
+ "grad_norm": 0.3965769285465639,
917
+ "learning_rate": 4.184239109116393e-06,
918
+ "loss": 0.916,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.6876640419947506,
923
+ "grad_norm": 0.4040770175389451,
924
+ "learning_rate": 4.167096388661754e-06,
925
+ "loss": 0.9013,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.6929133858267716,
930
+ "grad_norm": 0.4065859256340288,
931
+ "learning_rate": 4.149811337196808e-06,
932
+ "loss": 0.9115,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.6981627296587927,
937
+ "grad_norm": 0.39095752489168806,
938
+ "learning_rate": 4.132385430460361e-06,
939
+ "loss": 0.9401,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.7034120734908137,
944
+ "grad_norm": 0.37457240781741025,
945
+ "learning_rate": 4.114820156216969e-06,
946
+ "loss": 0.9178,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.7086614173228346,
951
+ "grad_norm": 0.399797934048477,
952
+ "learning_rate": 4.097117014129903e-06,
953
+ "loss": 0.9579,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.7139107611548556,
958
+ "grad_norm": 0.4477976289426918,
959
+ "learning_rate": 4.079277515633127e-06,
960
+ "loss": 0.9448,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.7191601049868767,
965
+ "grad_norm": 0.38322925064614577,
966
+ "learning_rate": 4.061303183802248e-06,
967
+ "loss": 0.9192,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.7244094488188977,
972
+ "grad_norm": 0.40594305556063015,
973
+ "learning_rate": 4.043195553224482e-06,
974
+ "loss": 0.9254,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.7296587926509186,
979
+ "grad_norm": 0.36120175115175723,
980
+ "learning_rate": 4.024956169867642e-06,
981
+ "loss": 0.9591,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.7349081364829396,
986
+ "grad_norm": 0.38003421628995726,
987
+ "learning_rate": 4.006586590948141e-06,
988
+ "loss": 0.9154,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.7401574803149606,
993
+ "grad_norm": 0.3779196146369032,
994
+ "learning_rate": 3.9880883847980475e-06,
995
+ "loss": 0.9412,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.7454068241469817,
1000
+ "grad_norm": 0.3908051818324559,
1001
+ "learning_rate": 3.969463130731183e-06,
1002
+ "loss": 0.9037,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.7506561679790026,
1007
+ "grad_norm": 0.4043989800878751,
1008
+ "learning_rate": 3.95071241890829e-06,
1009
+ "loss": 0.9032,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.7559055118110236,
1014
+ "grad_norm": 0.396255171092691,
1015
+ "learning_rate": 3.9318378502012636e-06,
1016
+ "loss": 0.9288,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.7611548556430446,
1021
+ "grad_norm": 0.40757200005039956,
1022
+ "learning_rate": 3.91284103605648e-06,
1023
+ "loss": 0.9179,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.7664041994750657,
1028
+ "grad_norm": 0.3862826523020415,
1029
+ "learning_rate": 3.893723598357214e-06,
1030
+ "loss": 0.8894,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.7716535433070866,
1035
+ "grad_norm": 0.3770664118848218,
1036
+ "learning_rate": 3.874487169285168e-06,
1037
+ "loss": 0.8898,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.7769028871391076,
1042
+ "grad_norm": 0.3854873052422692,
1043
+ "learning_rate": 3.855133391181124e-06,
1044
+ "loss": 0.9135,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.7821522309711286,
1049
+ "grad_norm": 0.38997928953459443,
1050
+ "learning_rate": 3.835663916404721e-06,
1051
+ "loss": 0.8843,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.7874015748031497,
1056
+ "grad_norm": 0.45712052623884775,
1057
+ "learning_rate": 3.81608040719339e-06,
1058
+ "loss": 0.9694,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.7926509186351706,
1063
+ "grad_norm": 0.41182630339038373,
1064
+ "learning_rate": 3.7963845355204303e-06,
1065
+ "loss": 0.9194,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.7979002624671916,
1070
+ "grad_norm": 0.4065794661619882,
1071
+ "learning_rate": 3.7765779829522674e-06,
1072
+ "loss": 0.9278,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.8031496062992126,
1077
+ "grad_norm": 0.38122636394786497,
1078
+ "learning_rate": 3.7566624405048847e-06,
1079
+ "loss": 0.892,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.8083989501312336,
1084
+ "grad_norm": 0.4026809828765533,
1085
+ "learning_rate": 3.736639608499448e-06,
1086
+ "loss": 0.9246,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.8136482939632546,
1091
+ "grad_norm": 0.3884561226623423,
1092
+ "learning_rate": 3.7165111964171407e-06,
1093
+ "loss": 0.9438,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.8188976377952756,
1098
+ "grad_norm": 0.3844815855908215,
1099
+ "learning_rate": 3.6962789227532165e-06,
1100
+ "loss": 0.9316,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.8241469816272966,
1105
+ "grad_norm": 0.3715029261772477,
1106
+ "learning_rate": 3.675944514870274e-06,
1107
+ "loss": 0.924,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.8293963254593176,
1112
+ "grad_norm": 0.4062567635907239,
1113
+ "learning_rate": 3.6555097088507837e-06,
1114
+ "loss": 0.9616,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.8346456692913385,
1119
+ "grad_norm": 0.40370287012056855,
1120
+ "learning_rate": 3.634976249348867e-06,
1121
+ "loss": 0.9526,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.8398950131233596,
1126
+ "grad_norm": 0.3899308479039462,
1127
+ "learning_rate": 3.6143458894413463e-06,
1128
+ "loss": 0.9215,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.8451443569553806,
1133
+ "grad_norm": 0.3813874729696962,
1134
+ "learning_rate": 3.5936203904780665e-06,
1135
+ "loss": 0.953,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.8503937007874016,
1140
+ "grad_norm": 0.38224710953621555,
1141
+ "learning_rate": 3.5728015219315226e-06,
1142
+ "loss": 0.894,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.8556430446194225,
1147
+ "grad_norm": 0.4038493099805114,
1148
+ "learning_rate": 3.5518910612457885e-06,
1149
+ "loss": 0.9614,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.8608923884514436,
1154
+ "grad_norm": 0.3976228258032158,
1155
+ "learning_rate": 3.530890793684759e-06,
1156
+ "loss": 0.9364,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.8661417322834646,
1161
+ "grad_norm": 0.4141980981190029,
1162
+ "learning_rate": 3.5098025121797375e-06,
1163
+ "loss": 0.9316,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.8713910761154856,
1168
+ "grad_norm": 0.4156903411116242,
1169
+ "learning_rate": 3.4886280171763563e-06,
1170
+ "loss": 0.923,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.8766404199475065,
1175
+ "grad_norm": 0.38250613966133334,
1176
+ "learning_rate": 3.467369116480864e-06,
1177
+ "loss": 0.9153,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.8818897637795275,
1182
+ "grad_norm": 0.4070344049084728,
1183
+ "learning_rate": 3.446027625105776e-06,
1184
+ "loss": 0.9347,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.8871391076115486,
1189
+ "grad_norm": 0.3844877252304378,
1190
+ "learning_rate": 3.424605365114923e-06,
1191
+ "loss": 0.9214,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.8923884514435696,
1196
+ "grad_norm": 0.37585915847896717,
1197
+ "learning_rate": 3.403104165467883e-06,
1198
+ "loss": 0.9133,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.8976377952755905,
1203
+ "grad_norm": 0.6300998021233689,
1204
+ "learning_rate": 3.3815258618638316e-06,
1205
+ "loss": 0.9395,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.9028871391076115,
1210
+ "grad_norm": 0.3994171061317929,
1211
+ "learning_rate": 3.359872296584821e-06,
1212
+ "loss": 0.917,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.9081364829396326,
1217
+ "grad_norm": 0.3806190962949758,
1218
+ "learning_rate": 3.338145318338485e-06,
1219
+ "loss": 0.9408,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.9133858267716536,
1224
+ "grad_norm": 0.36777162273585867,
1225
+ "learning_rate": 3.3163467821002082e-06,
1226
+ "loss": 0.9346,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.9186351706036745,
1231
+ "grad_norm": 0.3927948155295108,
1232
+ "learning_rate": 3.2944785489547544e-06,
1233
+ "loss": 0.9121,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.9238845144356955,
1238
+ "grad_norm": 0.3958182964876464,
1239
+ "learning_rate": 3.272542485937369e-06,
1240
+ "loss": 0.9318,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.9291338582677166,
1245
+ "grad_norm": 0.39754399123912254,
1246
+ "learning_rate": 3.250540465874382e-06,
1247
+ "loss": 0.9244,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.9343832020997376,
1252
+ "grad_norm": 0.38861358420887904,
1253
+ "learning_rate": 3.228474367223312e-06,
1254
+ "loss": 0.9051,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.9396325459317585,
1259
+ "grad_norm": 0.3926071787199394,
1260
+ "learning_rate": 3.206346073912488e-06,
1261
+ "loss": 0.9409,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.9448818897637795,
1266
+ "grad_norm": 0.4008739814562732,
1267
+ "learning_rate": 3.184157475180208e-06,
1268
+ "loss": 0.9222,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.9501312335958005,
1273
+ "grad_norm": 0.3665607732753151,
1274
+ "learning_rate": 3.1619104654134397e-06,
1275
+ "loss": 0.913,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.9553805774278216,
1280
+ "grad_norm": 0.38983081632202093,
1281
+ "learning_rate": 3.1396069439860894e-06,
1282
+ "loss": 0.9297,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.9606299212598425,
1287
+ "grad_norm": 0.3645800135143814,
1288
+ "learning_rate": 3.117248815096833e-06,
1289
+ "loss": 0.8883,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.9658792650918635,
1294
+ "grad_norm": 0.3720108758786826,
1295
+ "learning_rate": 3.094837987606547e-06,
1296
+ "loss": 0.9204,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.9711286089238845,
1301
+ "grad_norm": 0.3818234182095755,
1302
+ "learning_rate": 3.0723763748753354e-06,
1303
+ "loss": 0.8814,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.9763779527559056,
1308
+ "grad_norm": 0.3847151463563777,
1309
+ "learning_rate": 3.049865894599172e-06,
1310
+ "loss": 0.9133,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.9816272965879265,
1315
+ "grad_norm": 0.37971775342950864,
1316
+ "learning_rate": 3.027308468646175e-06,
1317
+ "loss": 0.8906,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.9868766404199475,
1322
+ "grad_norm": 0.41572124992250203,
1323
+ "learning_rate": 3.0047060228925256e-06,
1324
+ "loss": 0.9672,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.9921259842519685,
1329
+ "grad_norm": 0.40219608509658256,
1330
+ "learning_rate": 2.9820604870580426e-06,
1331
+ "loss": 0.9011,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.9973753280839895,
1336
+ "grad_norm": 0.397234257384178,
1337
+ "learning_rate": 2.9593737945414264e-06,
1338
+ "loss": 0.9174,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.0,
1343
+ "grad_norm": 0.397234257384178,
1344
+ "learning_rate": 2.9366478822551973e-06,
1345
+ "loss": 0.9204,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.005249343832021,
1350
+ "grad_norm": 0.6279719871788059,
1351
+ "learning_rate": 2.913884690460325e-06,
1352
+ "loss": 0.8376,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.010498687664042,
1357
+ "grad_norm": 0.41242697308859033,
1358
+ "learning_rate": 2.8910861626005774e-06,
1359
+ "loss": 0.8369,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.015748031496063,
1364
+ "grad_norm": 0.38981163388237194,
1365
+ "learning_rate": 2.8682542451365943e-06,
1366
+ "loss": 0.8493,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.020997375328084,
1371
+ "grad_norm": 0.42318354204075453,
1372
+ "learning_rate": 2.845390887379706e-06,
1373
+ "loss": 0.8618,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.026246719160105,
1378
+ "grad_norm": 0.5052809667467608,
1379
+ "learning_rate": 2.822498041325509e-06,
1380
+ "loss": 0.8644,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.031496062992126,
1385
+ "grad_norm": 0.36960238923766053,
1386
+ "learning_rate": 2.7995776614872083e-06,
1387
+ "loss": 0.8484,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.036745406824147,
1392
+ "grad_norm": 0.3606472920225704,
1393
+ "learning_rate": 2.776631704728752e-06,
1394
+ "loss": 0.8413,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.041994750656168,
1399
+ "grad_norm": 0.38778609923815943,
1400
+ "learning_rate": 2.753662130097758e-06,
1401
+ "loss": 0.8266,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.047244094488189,
1406
+ "grad_norm": 0.3636856280047818,
1407
+ "learning_rate": 2.730670898658255e-06,
1408
+ "loss": 0.8285,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.05249343832021,
1413
+ "grad_norm": 0.3886565787437705,
1414
+ "learning_rate": 2.70765997332326e-06,
1415
+ "loss": 0.8628,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.057742782152231,
1420
+ "grad_norm": 0.41378173196429036,
1421
+ "learning_rate": 2.684631318687185e-06,
1422
+ "loss": 0.8549,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.0629921259842519,
1427
+ "grad_norm": 0.3657527566283362,
1428
+ "learning_rate": 2.661586900858111e-06,
1429
+ "loss": 0.8472,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.068241469816273,
1434
+ "grad_norm": 0.3666340150026852,
1435
+ "learning_rate": 2.638528687289925e-06,
1436
+ "loss": 0.8331,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.073490813648294,
1441
+ "grad_norm": 0.3661321106045701,
1442
+ "learning_rate": 2.6154586466143495e-06,
1443
+ "loss": 0.8706,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.078740157480315,
1448
+ "grad_norm": 0.3796204270047528,
1449
+ "learning_rate": 2.592378748472863e-06,
1450
+ "loss": 0.8329,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.083989501312336,
1455
+ "grad_norm": 0.4003268539729557,
1456
+ "learning_rate": 2.5692909633485414e-06,
1457
+ "loss": 0.8762,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.0892388451443569,
1462
+ "grad_norm": 0.3816091507612548,
1463
+ "learning_rate": 2.546197262397825e-06,
1464
+ "loss": 0.8499,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.094488188976378,
1469
+ "grad_norm": 0.4135433735229758,
1470
+ "learning_rate": 2.5230996172822274e-06,
1471
+ "loss": 0.8191,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.099737532808399,
1476
+ "grad_norm": 0.38519176727175336,
1477
+ "learning_rate": 2.5e-06,
1478
+ "loss": 0.8164,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.10498687664042,
1483
+ "grad_norm": 0.397224934471037,
1484
+ "learning_rate": 2.4769003827177735e-06,
1485
+ "loss": 0.8373,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.110236220472441,
1490
+ "grad_norm": 0.37696141546345585,
1491
+ "learning_rate": 2.453802737602176e-06,
1492
+ "loss": 0.8575,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.1154855643044619,
1497
+ "grad_norm": 0.38562550508165394,
1498
+ "learning_rate": 2.4307090366514594e-06,
1499
+ "loss": 0.8372,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.120734908136483,
1504
+ "grad_norm": 0.392610655726213,
1505
+ "learning_rate": 2.4076212515271384e-06,
1506
+ "loss": 0.8561,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.125984251968504,
1511
+ "grad_norm": 0.3752434088251031,
1512
+ "learning_rate": 2.3845413533856517e-06,
1513
+ "loss": 0.8539,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.1312335958005248,
1518
+ "grad_norm": 0.3769283394800778,
1519
+ "learning_rate": 2.3614713127100752e-06,
1520
+ "loss": 0.8134,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.136482939632546,
1525
+ "grad_norm": 0.39533971296250825,
1526
+ "learning_rate": 2.3384130991418896e-06,
1527
+ "loss": 0.8608,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.141732283464567,
1532
+ "grad_norm": 0.5791866799791944,
1533
+ "learning_rate": 2.3153686813128153e-06,
1534
+ "loss": 0.8334,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.1469816272965878,
1539
+ "grad_norm": 0.3810153033409976,
1540
+ "learning_rate": 2.2923400266767406e-06,
1541
+ "loss": 0.8472,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.152230971128609,
1546
+ "grad_norm": 0.3728143509479016,
1547
+ "learning_rate": 2.269329101341745e-06,
1548
+ "loss": 0.8376,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.1574803149606299,
1553
+ "grad_norm": 0.40305096887095054,
1554
+ "learning_rate": 2.246337869902243e-06,
1555
+ "loss": 0.8275,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.162729658792651,
1560
+ "grad_norm": 0.3692851271916895,
1561
+ "learning_rate": 2.2233682952712484e-06,
1562
+ "loss": 0.8413,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.167979002624672,
1567
+ "grad_norm": 0.3963527736664121,
1568
+ "learning_rate": 2.2004223385127925e-06,
1569
+ "loss": 0.8295,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.1732283464566928,
1574
+ "grad_norm": 0.3587695306587395,
1575
+ "learning_rate": 2.1775019586744924e-06,
1576
+ "loss": 0.8547,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.178477690288714,
1581
+ "grad_norm": 0.3614709935886563,
1582
+ "learning_rate": 2.1546091126202955e-06,
1583
+ "loss": 0.813,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.1837270341207349,
1588
+ "grad_norm": 0.4140010983968987,
1589
+ "learning_rate": 2.131745754863406e-06,
1590
+ "loss": 0.8398,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.188976377952756,
1595
+ "grad_norm": 0.45996885685295197,
1596
+ "learning_rate": 2.1089138373994226e-06,
1597
+ "loss": 0.8518,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.194225721784777,
1602
+ "grad_norm": 0.36254259181474985,
1603
+ "learning_rate": 2.086115309539675e-06,
1604
+ "loss": 0.8647,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.1994750656167978,
1609
+ "grad_norm": 0.4122269000782737,
1610
+ "learning_rate": 2.063352117744803e-06,
1611
+ "loss": 0.8881,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.204724409448819,
1616
+ "grad_norm": 0.40615776242804974,
1617
+ "learning_rate": 2.040626205458574e-06,
1618
+ "loss": 0.8328,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.20997375328084,
1623
+ "grad_norm": 0.41826600558691523,
1624
+ "learning_rate": 2.017939512941958e-06,
1625
+ "loss": 0.8281,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.2152230971128608,
1630
+ "grad_norm": 0.4153271729906844,
1631
+ "learning_rate": 1.995293977107475e-06,
1632
+ "loss": 0.8693,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.220472440944882,
1637
+ "grad_norm": 0.3654074693662248,
1638
+ "learning_rate": 1.972691531353826e-06,
1639
+ "loss": 0.821,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.2257217847769029,
1644
+ "grad_norm": 0.3981178374801672,
1645
+ "learning_rate": 1.9501341054008292e-06,
1646
+ "loss": 0.8962,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 1.2309711286089238,
1651
+ "grad_norm": 0.4049324135862524,
1652
+ "learning_rate": 1.9276236251246655e-06,
1653
+ "loss": 0.7905,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 1.236220472440945,
1658
+ "grad_norm": 0.33631867862267323,
1659
+ "learning_rate": 1.9051620123934538e-06,
1660
+ "loss": 0.8284,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 1.2414698162729658,
1665
+ "grad_norm": 0.37393386640045784,
1666
+ "learning_rate": 1.882751184903167e-06,
1667
+ "loss": 0.8405,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 1.246719160104987,
1672
+ "grad_norm": 0.3462880519364805,
1673
+ "learning_rate": 1.860393056013911e-06,
1674
+ "loss": 0.7939,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 1.2519685039370079,
1679
+ "grad_norm": 0.3848360075044728,
1680
+ "learning_rate": 1.8380895345865603e-06,
1681
+ "loss": 0.8375,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 1.257217847769029,
1686
+ "grad_norm": 0.3617106402936481,
1687
+ "learning_rate": 1.8158425248197931e-06,
1688
+ "loss": 0.8162,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 1.26246719160105,
1693
+ "grad_norm": 0.34772753646733273,
1694
+ "learning_rate": 1.7936539260875125e-06,
1695
+ "loss": 0.8408,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 1.2677165354330708,
1700
+ "grad_norm": 0.36406532287683085,
1701
+ "learning_rate": 1.7715256327766887e-06,
1702
+ "loss": 0.8103,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 1.272965879265092,
1707
+ "grad_norm": 0.3765574533307364,
1708
+ "learning_rate": 1.7494595341256185e-06,
1709
+ "loss": 0.8461,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 1.2782152230971129,
1714
+ "grad_norm": 0.3859435308304487,
1715
+ "learning_rate": 1.7274575140626318e-06,
1716
+ "loss": 0.8761,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 1.2834645669291338,
1721
+ "grad_norm": 0.3936691957558663,
1722
+ "learning_rate": 1.7055214510452462e-06,
1723
+ "loss": 0.9159,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.288713910761155,
1728
+ "grad_norm": 0.5107365379023212,
1729
+ "learning_rate": 1.6836532178997922e-06,
1730
+ "loss": 0.8649,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.2939632545931758,
1735
+ "grad_norm": 0.388972979502565,
1736
+ "learning_rate": 1.6618546816615162e-06,
1737
+ "loss": 0.8734,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.2992125984251968,
1742
+ "grad_norm": 0.4410810635653612,
1743
+ "learning_rate": 1.6401277034151798e-06,
1744
+ "loss": 0.8405,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.304461942257218,
1749
+ "grad_norm": 0.38502463729196623,
1750
+ "learning_rate": 1.6184741381361684e-06,
1751
+ "loss": 0.8546,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.3097112860892388,
1756
+ "grad_norm": 0.38032181472927906,
1757
+ "learning_rate": 1.5968958345321178e-06,
1758
+ "loss": 0.8253,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 1.3149606299212597,
1763
+ "grad_norm": 0.36970392450888717,
1764
+ "learning_rate": 1.5753946348850774e-06,
1765
+ "loss": 0.8558,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 1.3202099737532809,
1770
+ "grad_norm": 0.3934484470589474,
1771
+ "learning_rate": 1.5539723748942246e-06,
1772
+ "loss": 0.8299,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 1.3254593175853018,
1777
+ "grad_norm": 0.3602834073019444,
1778
+ "learning_rate": 1.5326308835191372e-06,
1779
+ "loss": 0.8476,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 1.330708661417323,
1784
+ "grad_norm": 0.3482676328694225,
1785
+ "learning_rate": 1.5113719828236439e-06,
1786
+ "loss": 0.858,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 1.3359580052493438,
1791
+ "grad_norm": 0.44035367856347457,
1792
+ "learning_rate": 1.490197487820263e-06,
1793
+ "loss": 0.8351,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 1.341207349081365,
1798
+ "grad_norm": 0.371715281121202,
1799
+ "learning_rate": 1.4691092063152417e-06,
1800
+ "loss": 0.827,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 1.3464566929133859,
1805
+ "grad_norm": 0.35070038567136974,
1806
+ "learning_rate": 1.4481089387542134e-06,
1807
+ "loss": 0.8492,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 1.3517060367454068,
1812
+ "grad_norm": 0.3499117772233927,
1813
+ "learning_rate": 1.4271984780684778e-06,
1814
+ "loss": 0.8399,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 1.356955380577428,
1819
+ "grad_norm": 0.3811483044855955,
1820
+ "learning_rate": 1.4063796095219345e-06,
1821
+ "loss": 0.8688,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 1.3622047244094488,
1826
+ "grad_norm": 0.3714007196954483,
1827
+ "learning_rate": 1.3856541105586545e-06,
1828
+ "loss": 0.813,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 1.3674540682414698,
1833
+ "grad_norm": 0.3577252388966486,
1834
+ "learning_rate": 1.3650237506511333e-06,
1835
+ "loss": 0.8506,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 1.372703412073491,
1840
+ "grad_norm": 0.3670679328461459,
1841
+ "learning_rate": 1.3444902911492174e-06,
1842
+ "loss": 0.8267,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 1.3779527559055118,
1847
+ "grad_norm": 0.3521888751612076,
1848
+ "learning_rate": 1.324055485129727e-06,
1849
+ "loss": 0.8079,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.3832020997375327,
1854
+ "grad_norm": 0.3751986141403746,
1855
+ "learning_rate": 1.303721077246784e-06,
1856
+ "loss": 0.8491,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.3884514435695539,
1861
+ "grad_norm": 0.3589588384505892,
1862
+ "learning_rate": 1.2834888035828597e-06,
1863
+ "loss": 0.8768,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.3937007874015748,
1868
+ "grad_norm": 0.372280310354174,
1869
+ "learning_rate": 1.2633603915005535e-06,
1870
+ "loss": 0.8335,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.3989501312335957,
1875
+ "grad_norm": 0.40534475247811924,
1876
+ "learning_rate": 1.2433375594951166e-06,
1877
+ "loss": 0.8719,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.4041994750656168,
1882
+ "grad_norm": 0.40997625659212245,
1883
+ "learning_rate": 1.2234220170477332e-06,
1884
+ "loss": 0.8269,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.4094488188976377,
1889
+ "grad_norm": 0.3668404917652971,
1890
+ "learning_rate": 1.2036154644795697e-06,
1891
+ "loss": 0.7913,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.4146981627296589,
1896
+ "grad_norm": 0.3641040286199539,
1897
+ "learning_rate": 1.1839195928066101e-06,
1898
+ "loss": 0.8469,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.4199475065616798,
1903
+ "grad_norm": 0.36110674154533795,
1904
+ "learning_rate": 1.164336083595279e-06,
1905
+ "loss": 0.8698,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.425196850393701,
1910
+ "grad_norm": 0.376323216718325,
1911
+ "learning_rate": 1.1448666088188766e-06,
1912
+ "loss": 0.8355,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.4304461942257218,
1917
+ "grad_norm": 0.37039873117700245,
1918
+ "learning_rate": 1.1255128307148319e-06,
1919
+ "loss": 0.8219,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.4356955380577427,
1924
+ "grad_norm": 0.3612230977145218,
1925
+ "learning_rate": 1.1062764016427864e-06,
1926
+ "loss": 0.8568,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.4409448818897639,
1931
+ "grad_norm": 0.3962177187198973,
1932
+ "learning_rate": 1.0871589639435204e-06,
1933
+ "loss": 0.8115,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.4461942257217848,
1938
+ "grad_norm": 0.38303094180829605,
1939
+ "learning_rate": 1.068162149798737e-06,
1940
+ "loss": 0.818,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.4514435695538057,
1945
+ "grad_norm": 0.364448052838668,
1946
+ "learning_rate": 1.049287581091711e-06,
1947
+ "loss": 0.803,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.4566929133858268,
1952
+ "grad_norm": 0.37746023670056045,
1953
+ "learning_rate": 1.0305368692688175e-06,
1954
+ "loss": 0.8495,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.4619422572178478,
1959
+ "grad_norm": 0.40984945067844814,
1960
+ "learning_rate": 1.0119116152019535e-06,
1961
+ "loss": 0.8631,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.4671916010498687,
1966
+ "grad_norm": 0.3840327770579671,
1967
+ "learning_rate": 9.934134090518593e-07,
1968
+ "loss": 0.8318,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.4724409448818898,
1973
+ "grad_norm": 0.3575557636540703,
1974
+ "learning_rate": 9.750438301323584e-07,
1975
+ "loss": 0.8244,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.4776902887139107,
1980
+ "grad_norm": 0.363642443404998,
1981
+ "learning_rate": 9.56804446775518e-07,
1982
+ "loss": 0.8109,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.4829396325459316,
1987
+ "grad_norm": 0.3410295671236108,
1988
+ "learning_rate": 9.386968161977528e-07,
1989
+ "loss": 0.8227,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.4881889763779528,
1994
+ "grad_norm": 0.3693264048471325,
1995
+ "learning_rate": 9.207224843668733e-07,
1996
+ "loss": 0.8349,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.4934383202099737,
2001
+ "grad_norm": 0.3912247837861982,
2002
+ "learning_rate": 9.028829858700974e-07,
2003
+ "loss": 0.8218,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.4986876640419948,
2008
+ "grad_norm": 0.3771536484006796,
2009
+ "learning_rate": 8.851798437830323e-07,
2010
+ "loss": 0.8328,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.5039370078740157,
2015
+ "grad_norm": 0.3956914054034924,
2016
+ "learning_rate": 8.676145695396399e-07,
2017
+ "loss": 0.8779,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.5091863517060369,
2022
+ "grad_norm": 0.34503047792761804,
2023
+ "learning_rate": 8.501886628031941e-07,
2024
+ "loss": 0.8265,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.5144356955380578,
2029
+ "grad_norm": 0.3888965654379534,
2030
+ "learning_rate": 8.329036113382474e-07,
2031
+ "loss": 0.8354,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.5196850393700787,
2036
+ "grad_norm": 0.38477861699293,
2037
+ "learning_rate": 8.157608908836071e-07,
2038
+ "loss": 0.8109,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.5249343832020998,
2043
+ "grad_norm": 0.378643274506092,
2044
+ "learning_rate": 7.987619650263462e-07,
2045
+ "loss": 0.8507,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.5301837270341208,
2050
+ "grad_norm": 0.3619947185774947,
2051
+ "learning_rate": 7.819082850768433e-07,
2052
+ "loss": 0.8321,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.5354330708661417,
2057
+ "grad_norm": 0.3793890733316615,
2058
+ "learning_rate": 7.652012899448761e-07,
2059
+ "loss": 0.846,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.5406824146981628,
2064
+ "grad_norm": 0.37104232865461917,
2065
+ "learning_rate": 7.486424060167726e-07,
2066
+ "loss": 0.8113,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.5459317585301837,
2071
+ "grad_norm": 2.1051715634012864,
2072
+ "learning_rate": 7.322330470336314e-07,
2073
+ "loss": 0.8174,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.5511811023622046,
2078
+ "grad_norm": 0.45390059444688674,
2079
+ "learning_rate": 7.159746139706194e-07,
2080
+ "loss": 0.8414,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 1.5564304461942258,
2085
+ "grad_norm": 0.39115421496994207,
2086
+ "learning_rate": 6.99868494917364e-07,
2087
+ "loss": 0.8085,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 1.5616797900262467,
2092
+ "grad_norm": 0.37250458373292433,
2093
+ "learning_rate": 6.839160649594401e-07,
2094
+ "loss": 0.7906,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 1.5669291338582676,
2099
+ "grad_norm": 0.3746838213451273,
2100
+ "learning_rate": 6.68118686060972e-07,
2101
+ "loss": 0.8314,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 1.5721784776902887,
2106
+ "grad_norm": 0.5365749531577879,
2107
+ "learning_rate": 6.524777069483526e-07,
2108
+ "loss": 0.8332,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 1.5774278215223099,
2113
+ "grad_norm": 0.3788491507367419,
2114
+ "learning_rate": 6.369944629950933e-07,
2115
+ "loss": 0.8611,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 1.5826771653543306,
2120
+ "grad_norm": 0.3690009715495826,
2121
+ "learning_rate": 6.216702761078167e-07,
2122
+ "loss": 0.8099,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 1.5879265091863517,
2127
+ "grad_norm": 0.34643553497540036,
2128
+ "learning_rate": 6.06506454613393e-07,
2129
+ "loss": 0.8255,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 1.5931758530183728,
2134
+ "grad_norm": 0.37384009617772274,
2135
+ "learning_rate": 5.915042931472426e-07,
2136
+ "loss": 0.8024,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 1.5984251968503937,
2141
+ "grad_norm": 0.34112911330910745,
2142
+ "learning_rate": 5.766650725428027e-07,
2143
+ "loss": 0.8172,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 1.6036745406824147,
2148
+ "grad_norm": 0.3675924179740712,
2149
+ "learning_rate": 5.619900597221753e-07,
2150
+ "loss": 0.8195,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 1.6089238845144358,
2155
+ "grad_norm": 0.36296097997746496,
2156
+ "learning_rate": 5.474805075879616e-07,
2157
+ "loss": 0.808,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 1.6141732283464567,
2162
+ "grad_norm": 0.37901033900237063,
2163
+ "learning_rate": 5.33137654916292e-07,
2164
+ "loss": 0.8068,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 1.6194225721784776,
2169
+ "grad_norm": 0.3662350700773784,
2170
+ "learning_rate": 5.189627262510655e-07,
2171
+ "loss": 0.8695,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 1.6246719160104988,
2176
+ "grad_norm": 0.36967015418887056,
2177
+ "learning_rate": 5.049569317994013e-07,
2178
+ "loss": 0.8448,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 1.6299212598425197,
2183
+ "grad_norm": 0.3579476966594129,
2184
+ "learning_rate": 4.911214673283157e-07,
2185
+ "loss": 0.8375,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 1.6351706036745406,
2190
+ "grad_norm": 0.3611024965491316,
2191
+ "learning_rate": 4.774575140626317e-07,
2192
+ "loss": 0.8519,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 1.6404199475065617,
2197
+ "grad_norm": 0.3485470659035558,
2198
+ "learning_rate": 4.639662385841293e-07,
2199
+ "loss": 0.8217,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 1.6456692913385826,
2204
+ "grad_norm": 0.37287096492671606,
2205
+ "learning_rate": 4.506487927319475e-07,
2206
+ "loss": 0.8413,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 1.6509186351706036,
2211
+ "grad_norm": 0.38705573070810245,
2212
+ "learning_rate": 4.3750631350424456e-07,
2213
+ "loss": 0.8499,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 1.6561679790026247,
2218
+ "grad_norm": 0.3582574621798544,
2219
+ "learning_rate": 4.2453992296112384e-07,
2220
+ "loss": 0.8422,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 1.6614173228346458,
2225
+ "grad_norm": 0.36916485545424343,
2226
+ "learning_rate": 4.117507281288366e-07,
2227
+ "loss": 0.8312,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 1.6666666666666665,
2232
+ "grad_norm": 0.36367894508342596,
2233
+ "learning_rate": 3.991398209052685e-07,
2234
+ "loss": 0.8342,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 1.6719160104986877,
2239
+ "grad_norm": 0.39384159873675784,
2240
+ "learning_rate": 3.8670827796671637e-07,
2241
+ "loss": 0.8006,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 1.6771653543307088,
2246
+ "grad_norm": 0.39604366934016394,
2247
+ "learning_rate": 3.7445716067596506e-07,
2248
+ "loss": 0.8556,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 1.6824146981627297,
2253
+ "grad_norm": 0.3672901516398384,
2254
+ "learning_rate": 3.623875149916725e-07,
2255
+ "loss": 0.8621,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 1.6876640419947506,
2260
+ "grad_norm": 0.38389464950775926,
2261
+ "learning_rate": 3.505003713790689e-07,
2262
+ "loss": 0.8343,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 1.6929133858267718,
2267
+ "grad_norm": 0.36767539320644105,
2268
+ "learning_rate": 3.387967447219803e-07,
2269
+ "loss": 0.842,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.6981627296587927,
2274
+ "grad_norm": 0.3907752041858798,
2275
+ "learning_rate": 3.2727763423617915e-07,
2276
+ "loss": 0.8767,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.7034120734908136,
2281
+ "grad_norm": 0.37713933030901214,
2282
+ "learning_rate": 3.1594402338407633e-07,
2283
+ "loss": 0.8326,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 1.7086614173228347,
2288
+ "grad_norm": 0.38192173068300844,
2289
+ "learning_rate": 3.047968797907552e-07,
2290
+ "loss": 0.8168,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 1.7139107611548556,
2295
+ "grad_norm": 0.35632236660696437,
2296
+ "learning_rate": 2.9383715516136083e-07,
2297
+ "loss": 0.8344,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 1.7191601049868765,
2302
+ "grad_norm": 0.39281712398945773,
2303
+ "learning_rate": 2.8306578519984526e-07,
2304
+ "loss": 0.8057,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 1.7244094488188977,
2309
+ "grad_norm": 0.3713265865015316,
2310
+ "learning_rate": 2.7248368952908055e-07,
2311
+ "loss": 0.8128,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 1.7296587926509186,
2316
+ "grad_norm": 0.3704631773575278,
2317
+ "learning_rate": 2.620917716123444e-07,
2318
+ "loss": 0.8593,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 1.7349081364829395,
2323
+ "grad_norm": 0.3833563384401533,
2324
+ "learning_rate": 2.5189091867618615e-07,
2325
+ "loss": 0.8353,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 1.7401574803149606,
2330
+ "grad_norm": 0.39756909736931284,
2331
+ "learning_rate": 2.418820016346779e-07,
2332
+ "loss": 0.8596,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 1.7454068241469818,
2337
+ "grad_norm": 0.36212623044011794,
2338
+ "learning_rate": 2.3206587501505866e-07,
2339
+ "loss": 0.8311,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 1.7506561679790025,
2344
+ "grad_norm": 0.36098218836000906,
2345
+ "learning_rate": 2.224433768847789e-07,
2346
+ "loss": 0.8091,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 1.7559055118110236,
2351
+ "grad_norm": 0.3713293844163563,
2352
+ "learning_rate": 2.1301532877994747e-07,
2353
+ "loss": 0.8147,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 1.7611548556430447,
2358
+ "grad_norm": 0.34562968172819897,
2359
+ "learning_rate": 2.0378253563519247e-07,
2360
+ "loss": 0.8284,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 1.7664041994750657,
2365
+ "grad_norm": 0.39461152581923564,
2366
+ "learning_rate": 1.9474578571493874e-07,
2367
+ "loss": 0.8632,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 1.7716535433070866,
2372
+ "grad_norm": 0.3689417081438894,
2373
+ "learning_rate": 1.859058505461095e-07,
2374
+ "loss": 0.8259,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 1.7769028871391077,
2379
+ "grad_norm": 0.3926353728632124,
2380
+ "learning_rate": 1.7726348485225337e-07,
2381
+ "loss": 0.8364,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 1.7821522309711286,
2386
+ "grad_norm": 0.354022004999706,
2387
+ "learning_rate": 1.6881942648911077e-07,
2388
+ "loss": 0.8773,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 1.7874015748031495,
2393
+ "grad_norm": 0.3876142010040814,
2394
+ "learning_rate": 1.6057439638161891e-07,
2395
+ "loss": 0.82,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 1.7926509186351707,
2400
+ "grad_norm": 0.35474834193863947,
2401
+ "learning_rate": 1.5252909846235898e-07,
2402
+ "loss": 0.8193,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.7979002624671916,
2407
+ "grad_norm": 0.35916164129360717,
2408
+ "learning_rate": 1.4468421961145924e-07,
2409
+ "loss": 0.8398,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.8031496062992125,
2414
+ "grad_norm": 0.3592392678728242,
2415
+ "learning_rate": 1.3704042959795132e-07,
2416
+ "loss": 0.8384,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.8083989501312336,
2421
+ "grad_norm": 0.3717050715996407,
2422
+ "learning_rate": 1.2959838102258537e-07,
2423
+ "loss": 0.827,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.8136482939632546,
2428
+ "grad_norm": 0.3714676540830701,
2429
+ "learning_rate": 1.223587092621162e-07,
2430
+ "loss": 0.811,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.8188976377952755,
2435
+ "grad_norm": 0.36420858424939995,
2436
+ "learning_rate": 1.1532203241505474e-07,
2437
+ "loss": 0.8769,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.8241469816272966,
2442
+ "grad_norm": 0.3993728488042469,
2443
+ "learning_rate": 1.0848895124889819e-07,
2444
+ "loss": 0.8437,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.8293963254593177,
2449
+ "grad_norm": 0.36458761423411645,
2450
+ "learning_rate": 1.0186004914883779e-07,
2451
+ "loss": 0.8378,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.8346456692913384,
2456
+ "grad_norm": 0.3874822926899934,
2457
+ "learning_rate": 9.54358920679524e-08,
2458
+ "loss": 0.8284,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 1.8398950131233596,
2463
+ "grad_norm": 0.38256154200443654,
2464
+ "learning_rate": 8.921702847888791e-08,
2465
+ "loss": 0.8602,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 1.8451443569553807,
2470
+ "grad_norm": 0.36179666269244404,
2471
+ "learning_rate": 8.320398932703145e-08,
2472
+ "loss": 0.8274,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 1.8503937007874016,
2477
+ "grad_norm": 0.365807165050502,
2478
+ "learning_rate": 7.739728798518115e-08,
2479
+ "loss": 0.8709,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 1.8556430446194225,
2484
+ "grad_norm": 0.35458800620057285,
2485
+ "learning_rate": 7.17974202097152e-08,
2486
+ "loss": 0.8111,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 1.8608923884514437,
2491
+ "grad_norm": 0.37957333795063364,
2492
+ "learning_rate": 6.640486409826785e-08,
2493
+ "loss": 0.7994,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 1.8661417322834646,
2498
+ "grad_norm": 0.3527171222570775,
2499
+ "learning_rate": 6.12200800489085e-08,
2500
+ "loss": 0.853,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 1.8713910761154855,
2505
+ "grad_norm": 0.39242714191446193,
2506
+ "learning_rate": 5.624351072083561e-08,
2507
+ "loss": 0.8203,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 1.8766404199475066,
2512
+ "grad_norm": 0.35707175993984824,
2513
+ "learning_rate": 5.1475580996585285e-08,
2514
+ "loss": 0.7958,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 1.8818897637795275,
2519
+ "grad_norm": 0.3335686552470708,
2520
+ "learning_rate": 4.691669794575388e-08,
2521
+ "loss": 0.8433,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 1.8871391076115485,
2526
+ "grad_norm": 0.38462069858291403,
2527
+ "learning_rate": 4.256725079024554e-08,
2528
+ "loss": 0.7975,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 1.8923884514435696,
2533
+ "grad_norm": 0.34131290146851945,
2534
+ "learning_rate": 3.8427610871041024e-08,
2535
+ "loss": 0.8223,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 1.8976377952755905,
2540
+ "grad_norm": 0.35781280354041417,
2541
+ "learning_rate": 3.449813161649357e-08,
2542
+ "loss": 0.9063,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 1.9028871391076114,
2547
+ "grad_norm": 0.33992014890280325,
2548
+ "learning_rate": 3.077914851215585e-08,
2549
+ "loss": 0.8081,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 1.9081364829396326,
2554
+ "grad_norm": 0.3582145429279079,
2555
+ "learning_rate": 2.7270979072135106e-08,
2556
+ "loss": 0.8487,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 1.9133858267716537,
2561
+ "grad_norm": 0.36355378789809917,
2562
+ "learning_rate": 2.3973922811987295e-08,
2563
+ "loss": 0.8128,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 1.9186351706036744,
2568
+ "grad_norm": 0.36811282667120626,
2569
+ "learning_rate": 2.0888261223143136e-08,
2570
+ "loss": 0.8442,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 1.9238845144356955,
2575
+ "grad_norm": 0.36592765014539297,
2576
+ "learning_rate": 1.8014257748877606e-08,
2577
+ "loss": 0.8385,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.9291338582677167,
2582
+ "grad_norm": 0.3695353834129384,
2583
+ "learning_rate": 1.5352157761815978e-08,
2584
+ "loss": 0.809,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.9343832020997376,
2589
+ "grad_norm": 0.3907850295180158,
2590
+ "learning_rate": 1.2902188542986139e-08,
2591
+ "loss": 0.8295,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 1.9396325459317585,
2596
+ "grad_norm": 0.34933462418116523,
2597
+ "learning_rate": 1.0664559262413831e-08,
2598
+ "loss": 0.8238,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 1.9448818897637796,
2603
+ "grad_norm": 0.3537875486215043,
2604
+ "learning_rate": 8.639460961263612e-09,
2605
+ "loss": 0.8377,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 1.9501312335958005,
2610
+ "grad_norm": 0.35563927647325777,
2611
+ "learning_rate": 6.827066535529947e-09,
2612
+ "loss": 0.7943,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 1.9553805774278215,
2617
+ "grad_norm": 0.3474400330562922,
2618
+ "learning_rate": 5.2275307212742986e-09,
2619
+ "loss": 0.8511,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 1.9606299212598426,
2624
+ "grad_norm": 0.3593397542649248,
2625
+ "learning_rate": 3.840990081415141e-09,
2626
+ "loss": 0.8186,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 1.9658792650918635,
2631
+ "grad_norm": 0.3612580709923566,
2632
+ "learning_rate": 2.6675629940689508e-09,
2633
+ "loss": 0.848,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 1.9711286089238844,
2638
+ "grad_norm": 0.3614238458155997,
2639
+ "learning_rate": 1.707349642442735e-09,
2640
+ "loss": 0.7933,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 1.9763779527559056,
2645
+ "grad_norm": 0.39289720311660936,
2646
+ "learning_rate": 9.604320062814309e-10,
2647
+ "loss": 0.8323,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 1.9816272965879265,
2652
+ "grad_norm": 0.36167265662489084,
2653
+ "learning_rate": 4.268738548682261e-10,
2654
+ "loss": 0.8512,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 1.9868766404199474,
2659
+ "grad_norm": 0.3690750146631276,
2660
+ "learning_rate": 1.0672074158030176e-10,
2661
+ "loss": 0.832,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 1.9921259842519685,
2666
+ "grad_norm": 0.35408134628230764,
2667
+ "learning_rate": 0.0,
2668
+ "loss": 0.8172,
2669
+ "step": 380
2670
+ }
2671
+ ],
2672
+ "logging_steps": 1,
2673
+ "max_steps": 380,
2674
+ "num_input_tokens_seen": 0,
2675
+ "num_train_epochs": 2,
2676
+ "save_steps": 95,
2677
+ "stateful_callbacks": {
2678
+ "TrainerControl": {
2679
+ "args": {
2680
+ "should_epoch_stop": false,
2681
+ "should_evaluate": false,
2682
+ "should_log": false,
2683
+ "should_save": true,
2684
+ "should_training_stop": true
2685
+ },
2686
+ "attributes": {}
2687
+ }
2688
+ },
2689
+ "total_flos": 9.333503833071944e+17,
2690
+ "train_batch_size": 2,
2691
+ "trial_name": null,
2692
+ "trial_params": null
2693
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4bd5857f3af9b6fbcb1b4a0bbae3be221ab574653fcbbd77e41a92872dabd19
3
+ size 8440
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)