DeepMostInnovations commited on
Commit
cf31a0a
·
verified ·
1 Parent(s): db1b828

Update README with Enhanced RAG system instructions

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: hi
3
+ license: mit
4
+ tags:
5
+ - hindi
6
+ - embeddings
7
+ - sentence-embeddings
8
+ - semantic-search
9
+ - text-similarity
10
+ datasets:
11
+ - custom
12
+ pipeline_tag: sentence-similarity
13
+ library_name: transformers
14
+ ---
15
+
16
+ # Hindi Sentence Embeddings Model
17
+
18
+ This is a custom state-of-the-art sentence embedding model trained specifically for Hindi text. It leverages an advanced transformer architecture with specialized pooling strategies to create high-quality semantic representations of Hindi sentences.
19
+
20
+ ## Features
21
+
22
+ - Specialized for Hindi language text
23
+ - Advanced transformer architecture with optimized attention mechanism
24
+ - Multiple pooling strategies for enhanced semantic representations
25
+ - Creates normalized vector representations for semantic similarity
26
+ - Supports semantic search and text similarity applications
27
+
28
+ ## Usage
29
+
30
+ ### Installation
31
+
32
+ ```bash
33
+ pip install torch sentencepiece scikit-learn matplotlib
34
+ git lfs install
35
+ git clone https://huggingface.co/DeepMostInnovations/hindi-embedding-foundational-model
36
+ cd hindi-embedding-foundational-model
37
+ ```
38
+
39
+ ### Enhanced RAG System
40
+
41
+ This model now includes an enhanced RAG (Retrieval Augmented Generation) system that integrates Unsloth's optimized Llama-3.2-1B-Instruct model for question answering on top of Hindi document retrieval.
42
+
43
+ #### Setup and Installation
44
+
45
+ 1. Install additional dependencies:
46
+ ```bash
47
+ pip install unsloth transformers bitsandbytes accelerate langchain langchain-community faiss-cpu
48
+ ```
49
+
50
+ 2. Index your documents:
51
+ ```bash
52
+ python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --data_dir ./data --output_dir ./output --index
53
+ ```
54
+
55
+ 3. Run in QA mode with LLM:
56
+ ```bash
57
+ python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --output_dir ./output --interactive --qa
58
+ ```
59
+
60
+ ### Basic Embedding Usage
61
+
62
+ ```python
63
+ from hindi_embeddings import HindiEmbedder
64
+
65
+ # Initialize the embedder
66
+ model = HindiEmbedder("path/to/hindi-embedding-foundational-model")
67
+
68
+ # Encode sentences to embeddings
69
+ sentences = [
70
+ "मुझे हिंदी भाषा बहुत पसंद है।",
71
+ "मैं हिंदी भाषा सीख रहा हूँ।"
72
+ ]
73
+ embeddings = model.encode(sentences)
74
+ print(f"Embedding shape: {embeddings.shape}")
75
+
76
+ # Compute similarity between sentences
77
+ similarity = model.compute_similarity(sentences[0], sentences[1])
78
+ print(f"Similarity: {similarity:.4f}")
79
+
80
+ # Perform semantic search
81
+ query = "भारत की राजधानी"
82
+ documents = [
83
+ "दिल्ली भारत की राजधानी है।",
84
+ "मुंबई भारत का सबसे बड़ा शहर है।",
85
+ "हिमालय पर्वत भारत के उत्तर में स्थित है।"
86
+ ]
87
+ results = model.search(query, documents)
88
+ for i, result in enumerate(results):
89
+ print(f"{i+1}. Score: {result['score']:.4f}")
90
+ print(f" Document: {result['document']}")
91
+
92
+ # Visualize embeddings
93
+ example_sentences = [
94
+ "मुझे हिंदी में पढ़ना बहुत पसंद है।",
95
+ "आज मौसम बहुत अच्छा है।",
96
+ "भारत एक विशाल देश है।"
97
+ ]
98
+ model.visualize_embeddings(example_sentences)
99
+ ```
100
+
101
+ ## Model Details
102
+
103
+ This model uses an advanced transformer-based architecture with the following enhancements:
104
+
105
+ - Pre-layer normalization for stable training
106
+ - Specialized attention mechanism with relative positional encoding
107
+ - Multiple pooling strategies (weighted, mean, attention-based)
108
+ - L2-normalized vectors for cosine similarity
109
+
110
+ Technical specifications:
111
+ - Embedding dimension: 768
112
+ - Hidden dimension: 768
113
+ - Layers: 12
114
+ - Attention heads: 12
115
+ - Vocabulary size: 50,000
116
+ - Context length: 128 tokens
117
+
118
+ ## Applications
119
+
120
+ - Semantic search and information retrieval
121
+ - Text clustering and categorization
122
+ - Recommendation systems
123
+ - Question answering
124
+ - Document similarity comparison
125
+ - Content-based filtering
126
+ - RAG systems for Hindi language content
127
+
128
+ ## License
129
+
130
+ This model is released under the MIT License.
131
+
132
+ ## Citation
133
+
134
+ If you use this model in your research or application, please cite us:
135
+
136
+ ```
137
+ @misc{DeepMostInnovations2025hindi,
138
+ author = {DeepMost Innovations},
139
+ title = {Hindi Sentence Embeddings Model},
140
+ year = {2025},
141
+ publisher = {Hugging Face},
142
+ howpublished = {\url{https://huggingface.co/DeepMostInnovations/hindi-embedding-foundational-model}}
143
+ }
144
+ ```