Upload Hindi embeddings model and all associated files
Browse files- hindi-rag-system.py +881 -0
- hindi-rag-system.py.amltmp +881 -0
hindi-rag-system.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import re
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import sentencepiece as spm
|
10 |
+
import math
|
11 |
+
from safetensors.torch import save_file, load_file
|
12 |
+
from tqdm import tqdm
|
13 |
+
import faiss
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.vectorstores import FAISS as LangchainFAISS
|
16 |
+
from langchain.docstore.document import Document
|
17 |
+
from langchain.embeddings.base import Embeddings
|
18 |
+
from typing import List, Dict, Any, Optional, Callable
|
19 |
+
|
20 |
+
# Tokenizer wrapper class - same as in original code
|
21 |
+
class SentencePieceTokenizerWrapper:
|
22 |
+
def __init__(self, sp_model_path):
|
23 |
+
self.sp_model = spm.SentencePieceProcessor()
|
24 |
+
self.sp_model.Load(sp_model_path)
|
25 |
+
self.vocab_size = self.sp_model.GetPieceSize()
|
26 |
+
|
27 |
+
# Special token IDs from tokenizer training
|
28 |
+
self.pad_token_id = 0
|
29 |
+
self.bos_token_id = 1
|
30 |
+
self.eos_token_id = 2
|
31 |
+
self.unk_token_id = 3
|
32 |
+
|
33 |
+
# Set special tokens
|
34 |
+
self.pad_token = "<pad>"
|
35 |
+
self.bos_token = "<s>"
|
36 |
+
self.eos_token = "</s>"
|
37 |
+
self.unk_token = "<unk>"
|
38 |
+
self.mask_token = "<mask>"
|
39 |
+
|
40 |
+
def __call__(self, text, padding=False, truncation=False, max_length=None, return_tensors=None):
|
41 |
+
# Handle both string and list inputs
|
42 |
+
if isinstance(text, str):
|
43 |
+
# Encode a single string
|
44 |
+
ids = self.sp_model.EncodeAsIds(text)
|
45 |
+
|
46 |
+
# Handle truncation
|
47 |
+
if truncation and max_length and len(ids) > max_length:
|
48 |
+
ids = ids[:max_length]
|
49 |
+
|
50 |
+
attention_mask = [1] * len(ids)
|
51 |
+
|
52 |
+
# Handle padding
|
53 |
+
if padding and max_length:
|
54 |
+
padding_length = max(0, max_length - len(ids))
|
55 |
+
ids = ids + [self.pad_token_id] * padding_length
|
56 |
+
attention_mask = attention_mask + [0] * padding_length
|
57 |
+
|
58 |
+
result = {
|
59 |
+
'input_ids': ids,
|
60 |
+
'attention_mask': attention_mask
|
61 |
+
}
|
62 |
+
|
63 |
+
# Convert to tensors if requested
|
64 |
+
if return_tensors == 'pt':
|
65 |
+
import torch
|
66 |
+
result = {k: torch.tensor([v]) for k, v in result.items()}
|
67 |
+
|
68 |
+
return result
|
69 |
+
|
70 |
+
# Process a batch of texts
|
71 |
+
batch_encoded = [self.sp_model.EncodeAsIds(t) for t in text]
|
72 |
+
|
73 |
+
# Apply truncation if needed
|
74 |
+
if truncation and max_length:
|
75 |
+
batch_encoded = [ids[:max_length] for ids in batch_encoded]
|
76 |
+
|
77 |
+
# Create attention masks
|
78 |
+
batch_attention_mask = [[1] * len(ids) for ids in batch_encoded]
|
79 |
+
|
80 |
+
# Apply padding if needed
|
81 |
+
if padding:
|
82 |
+
if max_length:
|
83 |
+
max_len = max_length
|
84 |
+
else:
|
85 |
+
max_len = max(len(ids) for ids in batch_encoded)
|
86 |
+
|
87 |
+
# Pad sequences to max_len
|
88 |
+
batch_encoded = [ids + [self.pad_token_id] * (max_len - len(ids)) for ids in batch_encoded]
|
89 |
+
batch_attention_mask = [mask + [0] * (max_len - len(mask)) for mask in batch_attention_mask]
|
90 |
+
|
91 |
+
result = {
|
92 |
+
'input_ids': batch_encoded,
|
93 |
+
'attention_mask': batch_attention_mask
|
94 |
+
}
|
95 |
+
|
96 |
+
# Convert to tensors if requested
|
97 |
+
if return_tensors == 'pt':
|
98 |
+
import torch
|
99 |
+
result = {k: torch.tensor(v) for k, v in result.items()}
|
100 |
+
|
101 |
+
return result
|
102 |
+
|
103 |
+
# Model architecture definitions for inference
|
104 |
+
|
105 |
+
class MultiHeadAttention(nn.Module):
|
106 |
+
"""Advanced multi-headed attention with relative positional encoding"""
|
107 |
+
def __init__(self, config):
|
108 |
+
super().__init__()
|
109 |
+
self.num_attention_heads = config["num_attention_heads"]
|
110 |
+
self.attention_head_size = config["hidden_size"] // config["num_attention_heads"]
|
111 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
112 |
+
|
113 |
+
# Query, Key, Value projections
|
114 |
+
self.query = nn.Linear(config["hidden_size"], self.all_head_size)
|
115 |
+
self.key = nn.Linear(config["hidden_size"], self.all_head_size)
|
116 |
+
self.value = nn.Linear(config["hidden_size"], self.all_head_size)
|
117 |
+
|
118 |
+
# Output projection
|
119 |
+
self.output = nn.Sequential(
|
120 |
+
nn.Linear(self.all_head_size, config["hidden_size"]),
|
121 |
+
nn.Dropout(config["attention_probs_dropout_prob"])
|
122 |
+
)
|
123 |
+
|
124 |
+
# Simplified relative position bias approach
|
125 |
+
self.max_position_embeddings = config["max_position_embeddings"]
|
126 |
+
self.relative_attention_bias = nn.Embedding(
|
127 |
+
2 * config["max_position_embeddings"] - 1,
|
128 |
+
config["num_attention_heads"]
|
129 |
+
)
|
130 |
+
|
131 |
+
def transpose_for_scores(self, x):
|
132 |
+
new_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
133 |
+
x = x.view(*new_shape)
|
134 |
+
return x.permute(0, 2, 1, 3)
|
135 |
+
|
136 |
+
def forward(self, hidden_states, attention_mask=None):
|
137 |
+
batch_size, seq_length = hidden_states.size()[:2]
|
138 |
+
|
139 |
+
# Project inputs to queries, keys, and values
|
140 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
141 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
142 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
143 |
+
|
144 |
+
# Take the dot product between query and key to get the raw attention scores
|
145 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
146 |
+
|
147 |
+
# Generate relative position matrix
|
148 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device)
|
149 |
+
relative_position = position_ids.unsqueeze(1) - position_ids.unsqueeze(0) # [seq_len, seq_len]
|
150 |
+
# Shift values to be >= 0
|
151 |
+
relative_position = relative_position + self.max_position_embeddings - 1
|
152 |
+
# Ensure indices are within bounds
|
153 |
+
relative_position = torch.clamp(relative_position, 0, 2 * self.max_position_embeddings - 2)
|
154 |
+
|
155 |
+
# Get relative position embeddings [seq_len, seq_len, num_heads]
|
156 |
+
rel_attn_bias = self.relative_attention_bias(relative_position) # [seq_len, seq_len, num_heads]
|
157 |
+
|
158 |
+
# Reshape to add to attention heads [1, num_heads, seq_len, seq_len]
|
159 |
+
rel_attn_bias = rel_attn_bias.permute(2, 0, 1).unsqueeze(0)
|
160 |
+
|
161 |
+
# Add to attention scores - now dimensions will match
|
162 |
+
attention_scores = attention_scores + rel_attn_bias
|
163 |
+
|
164 |
+
# Scale attention scores
|
165 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
166 |
+
|
167 |
+
# Apply attention mask
|
168 |
+
if attention_mask is not None:
|
169 |
+
attention_scores = attention_scores + attention_mask
|
170 |
+
|
171 |
+
# Normalize the attention scores to probabilities
|
172 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
173 |
+
|
174 |
+
# Apply dropout
|
175 |
+
attention_probs = F.dropout(attention_probs, p=0.1, training=self.training)
|
176 |
+
|
177 |
+
# Apply attention to values
|
178 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
179 |
+
|
180 |
+
# Reshape back to [batch_size, seq_length, hidden_size]
|
181 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
182 |
+
new_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
183 |
+
context_layer = context_layer.view(*new_shape)
|
184 |
+
|
185 |
+
# Final output projection
|
186 |
+
output = self.output(context_layer)
|
187 |
+
|
188 |
+
return output
|
189 |
+
|
190 |
+
class EnhancedTransformerLayer(nn.Module):
|
191 |
+
"""Advanced transformer layer with pre-layer norm and enhanced attention"""
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.attention_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
195 |
+
self.attention = MultiHeadAttention(config)
|
196 |
+
|
197 |
+
self.ffn_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
198 |
+
|
199 |
+
# Feed-forward network
|
200 |
+
self.ffn = nn.Sequential(
|
201 |
+
nn.Linear(config["hidden_size"], config["intermediate_size"]),
|
202 |
+
nn.GELU(),
|
203 |
+
nn.Dropout(config["hidden_dropout_prob"]),
|
204 |
+
nn.Linear(config["intermediate_size"], config["hidden_size"]),
|
205 |
+
nn.Dropout(config["hidden_dropout_prob"])
|
206 |
+
)
|
207 |
+
|
208 |
+
def forward(self, hidden_states, attention_mask=None):
|
209 |
+
# Pre-layer norm for attention
|
210 |
+
attn_norm_hidden = self.attention_pre_norm(hidden_states)
|
211 |
+
|
212 |
+
# Self-attention
|
213 |
+
attention_output = self.attention(attn_norm_hidden, attention_mask)
|
214 |
+
|
215 |
+
# Residual connection
|
216 |
+
hidden_states = hidden_states + attention_output
|
217 |
+
|
218 |
+
# Pre-layer norm for feed-forward
|
219 |
+
ffn_norm_hidden = self.ffn_pre_norm(hidden_states)
|
220 |
+
|
221 |
+
# Feed-forward
|
222 |
+
ffn_output = self.ffn(ffn_norm_hidden)
|
223 |
+
|
224 |
+
# Residual connection
|
225 |
+
hidden_states = hidden_states + ffn_output
|
226 |
+
|
227 |
+
return hidden_states
|
228 |
+
|
229 |
+
class AdvancedTransformerModel(nn.Module):
|
230 |
+
"""Advanced Transformer model for inference"""
|
231 |
+
|
232 |
+
def __init__(self, config):
|
233 |
+
super().__init__()
|
234 |
+
self.config = config
|
235 |
+
|
236 |
+
# Embeddings
|
237 |
+
self.word_embeddings = nn.Embedding(
|
238 |
+
config["vocab_size"],
|
239 |
+
config["hidden_size"],
|
240 |
+
padding_idx=config["pad_token_id"]
|
241 |
+
)
|
242 |
+
|
243 |
+
# Position embeddings
|
244 |
+
self.position_embeddings = nn.Embedding(config["max_position_embeddings"], config["hidden_size"])
|
245 |
+
|
246 |
+
# Embedding dropout
|
247 |
+
self.embedding_dropout = nn.Dropout(config["hidden_dropout_prob"])
|
248 |
+
|
249 |
+
# Transformer layers
|
250 |
+
self.layers = nn.ModuleList([
|
251 |
+
EnhancedTransformerLayer(config) for _ in range(config["num_hidden_layers"])
|
252 |
+
])
|
253 |
+
|
254 |
+
# Final layer norm
|
255 |
+
self.final_layer_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
256 |
+
|
257 |
+
def forward(self, input_ids, attention_mask=None):
|
258 |
+
input_shape = input_ids.size()
|
259 |
+
batch_size, seq_length = input_shape
|
260 |
+
|
261 |
+
# Get position ids
|
262 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
263 |
+
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
|
264 |
+
|
265 |
+
# Get embeddings
|
266 |
+
word_embeds = self.word_embeddings(input_ids)
|
267 |
+
position_embeds = self.position_embeddings(position_ids)
|
268 |
+
|
269 |
+
# Sum embeddings
|
270 |
+
embeddings = word_embeds + position_embeds
|
271 |
+
|
272 |
+
# Apply dropout
|
273 |
+
embeddings = self.embedding_dropout(embeddings)
|
274 |
+
|
275 |
+
# Default attention mask
|
276 |
+
if attention_mask is None:
|
277 |
+
attention_mask = torch.ones(input_shape, device=input_ids.device)
|
278 |
+
|
279 |
+
# Extended attention mask for transformer layers (1 for tokens to attend to, 0 for masked tokens)
|
280 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
281 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
282 |
+
|
283 |
+
# Apply transformer layers
|
284 |
+
hidden_states = embeddings
|
285 |
+
for layer in self.layers:
|
286 |
+
hidden_states = layer(hidden_states, extended_attention_mask)
|
287 |
+
|
288 |
+
# Final layer norm
|
289 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
290 |
+
|
291 |
+
return hidden_states
|
292 |
+
|
293 |
+
class AdvancedPooling(nn.Module):
|
294 |
+
"""Advanced pooling module supporting multiple pooling strategies"""
|
295 |
+
def __init__(self, config):
|
296 |
+
super().__init__()
|
297 |
+
self.pooling_mode = config["pooling_mode"] # 'mean', 'max', 'cls', 'attention'
|
298 |
+
self.hidden_size = config["hidden_size"]
|
299 |
+
|
300 |
+
# For attention pooling
|
301 |
+
if self.pooling_mode == 'attention':
|
302 |
+
self.attention_weights = nn.Linear(config["hidden_size"], 1)
|
303 |
+
|
304 |
+
# For weighted pooling
|
305 |
+
elif self.pooling_mode == 'weighted':
|
306 |
+
self.weight_layer = nn.Linear(config["hidden_size"], 1)
|
307 |
+
|
308 |
+
def forward(self, token_embeddings, attention_mask=None):
|
309 |
+
if attention_mask is None:
|
310 |
+
attention_mask = torch.ones_like(token_embeddings[:, :, 0])
|
311 |
+
|
312 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
313 |
+
|
314 |
+
if self.pooling_mode == 'cls':
|
315 |
+
# Use [CLS] token (first token)
|
316 |
+
pooled = token_embeddings[:, 0]
|
317 |
+
|
318 |
+
elif self.pooling_mode == 'max':
|
319 |
+
# Max pooling
|
320 |
+
token_embeddings = token_embeddings.clone()
|
321 |
+
# Set padding tokens to large negative value to exclude them from max
|
322 |
+
token_embeddings[mask_expanded == 0] = -1e9
|
323 |
+
pooled = torch.max(token_embeddings, dim=1)[0]
|
324 |
+
|
325 |
+
elif self.pooling_mode == 'attention':
|
326 |
+
# Attention pooling
|
327 |
+
weights = self.attention_weights(token_embeddings).squeeze(-1)
|
328 |
+
# Mask out padding tokens
|
329 |
+
weights = weights.masked_fill(attention_mask == 0, -1e9)
|
330 |
+
weights = F.softmax(weights, dim=1).unsqueeze(-1)
|
331 |
+
pooled = torch.sum(token_embeddings * weights, dim=1)
|
332 |
+
|
333 |
+
elif self.pooling_mode == 'weighted':
|
334 |
+
# Weighted average pooling
|
335 |
+
weights = torch.sigmoid(self.weight_layer(token_embeddings)).squeeze(-1)
|
336 |
+
# Apply mask
|
337 |
+
weights = weights * attention_mask
|
338 |
+
# Normalize weights
|
339 |
+
sum_weights = torch.sum(weights, dim=1, keepdim=True)
|
340 |
+
sum_weights = torch.clamp(sum_weights, min=1e-9)
|
341 |
+
weights = weights / sum_weights
|
342 |
+
# Apply weights
|
343 |
+
pooled = torch.sum(token_embeddings * weights.unsqueeze(-1), dim=1)
|
344 |
+
|
345 |
+
else: # Default to mean pooling
|
346 |
+
# Mean pooling
|
347 |
+
sum_embeddings = torch.sum(token_embeddings * mask_expanded, dim=1)
|
348 |
+
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
349 |
+
pooled = sum_embeddings / sum_mask
|
350 |
+
|
351 |
+
# L2 normalize
|
352 |
+
pooled = F.normalize(pooled, p=2, dim=1)
|
353 |
+
|
354 |
+
return pooled
|
355 |
+
|
356 |
+
class SentenceEmbeddingModel(nn.Module):
|
357 |
+
"""Complete sentence embedding model for inference"""
|
358 |
+
def __init__(self, config):
|
359 |
+
super(SentenceEmbeddingModel, self).__init__()
|
360 |
+
self.config = config
|
361 |
+
|
362 |
+
# Create transformer model
|
363 |
+
self.transformer = AdvancedTransformerModel(config)
|
364 |
+
|
365 |
+
# Create pooling module
|
366 |
+
self.pooling = AdvancedPooling(config)
|
367 |
+
|
368 |
+
# Build projection module if needed
|
369 |
+
if "projection_dim" in config and config["projection_dim"] > 0:
|
370 |
+
self.use_projection = True
|
371 |
+
self.projection = nn.Sequential(
|
372 |
+
nn.Linear(config["hidden_size"], config["hidden_size"]),
|
373 |
+
nn.GELU(),
|
374 |
+
nn.Linear(config["hidden_size"], config["projection_dim"]),
|
375 |
+
nn.LayerNorm(config["projection_dim"], eps=config["layer_norm_eps"])
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
self.use_projection = False
|
379 |
+
|
380 |
+
def forward(self, input_ids, attention_mask=None):
|
381 |
+
# Get token embeddings from transformer
|
382 |
+
token_embeddings = self.transformer(input_ids, attention_mask)
|
383 |
+
|
384 |
+
# Pool token embeddings
|
385 |
+
pooled_output = self.pooling(token_embeddings, attention_mask)
|
386 |
+
|
387 |
+
# Apply projection if enabled
|
388 |
+
if self.use_projection:
|
389 |
+
pooled_output = self.projection(pooled_output)
|
390 |
+
pooled_output = F.normalize(pooled_output, p=2, dim=1)
|
391 |
+
|
392 |
+
return pooled_output
|
393 |
+
|
394 |
+
def convert_to_safetensors(model_path, output_path):
|
395 |
+
"""Convert PyTorch model to safetensors format"""
|
396 |
+
print(f"Converting model from {model_path} to safetensors format...")
|
397 |
+
|
398 |
+
try:
|
399 |
+
# First try with weights_only=False to handle PyTorch 2.6+ checkpoints
|
400 |
+
checkpoint = torch.load(model_path, map_location="cpu", weights_only=False)
|
401 |
+
print("Successfully loaded checkpoint with weights_only=False")
|
402 |
+
except TypeError:
|
403 |
+
# For older PyTorch versions that don't have weights_only parameter
|
404 |
+
print("Falling back to default torch.load behavior for older PyTorch versions")
|
405 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
406 |
+
|
407 |
+
# Get model state dict
|
408 |
+
if "model_state_dict" in checkpoint:
|
409 |
+
state_dict = checkpoint["model_state_dict"]
|
410 |
+
print("Extracted model_state_dict from checkpoint")
|
411 |
+
else:
|
412 |
+
state_dict = checkpoint
|
413 |
+
print("Using entire checkpoint as state_dict")
|
414 |
+
|
415 |
+
# Save as safetensors
|
416 |
+
save_file(state_dict, output_path)
|
417 |
+
print(f"Model converted and saved to {output_path}")
|
418 |
+
|
419 |
+
def load_model_and_tokenizer(model_dir, tokenizer_dir="/home/ubuntu/hindi_tokenizer"):
|
420 |
+
"""Load the model and tokenizer for inference"""
|
421 |
+
|
422 |
+
# Load the config
|
423 |
+
config_path = os.path.join(model_dir, "config.json")
|
424 |
+
with open(config_path, "r") as f:
|
425 |
+
config = json.load(f)
|
426 |
+
|
427 |
+
# Load the tokenizer - use specified tokenizer directory
|
428 |
+
tokenizer_path = os.path.join(tokenizer_dir, "tokenizer.model")
|
429 |
+
if not os.path.exists(tokenizer_path):
|
430 |
+
# Try other locations
|
431 |
+
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
|
432 |
+
if not os.path.exists(tokenizer_path):
|
433 |
+
raise FileNotFoundError(f"Could not find tokenizer model at {tokenizer_path}")
|
434 |
+
|
435 |
+
tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
|
436 |
+
print(f"Loaded tokenizer from {tokenizer_path} with vocabulary size: {tokenizer.vocab_size}")
|
437 |
+
|
438 |
+
# Load the model
|
439 |
+
safetensors_path = os.path.join(model_dir, "embedding_model.safetensors")
|
440 |
+
|
441 |
+
if not os.path.exists(safetensors_path):
|
442 |
+
print(f"Safetensors model not found at {safetensors_path}, converting from PyTorch checkpoint...")
|
443 |
+
|
444 |
+
# Convert from PyTorch checkpoint
|
445 |
+
pytorch_path = os.path.join(model_dir, "embedding_model.pt")
|
446 |
+
if not os.path.exists(pytorch_path):
|
447 |
+
raise FileNotFoundError(f"Could not find PyTorch model at {pytorch_path}")
|
448 |
+
|
449 |
+
convert_to_safetensors(pytorch_path, safetensors_path)
|
450 |
+
|
451 |
+
# Load state dict from safetensors
|
452 |
+
state_dict = load_file(safetensors_path)
|
453 |
+
|
454 |
+
# Create model
|
455 |
+
model = SentenceEmbeddingModel(config)
|
456 |
+
|
457 |
+
# Load state dict
|
458 |
+
try:
|
459 |
+
# Try direct loading
|
460 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
461 |
+
print(f"Loaded model with missing keys: {missing_keys[:10]}{'...' if len(missing_keys) > 10 else ''}")
|
462 |
+
print(f"Unexpected keys: {unexpected_keys[:10]}{'...' if len(unexpected_keys) > 10 else ''}")
|
463 |
+
except Exception as e:
|
464 |
+
print(f"Error loading state dict: {e}")
|
465 |
+
print("Model will be initialized with random weights")
|
466 |
+
|
467 |
+
model.eval()
|
468 |
+
|
469 |
+
return model, tokenizer, config
|
470 |
+
|
471 |
+
# LangChain Custom Embeddings Class
|
472 |
+
class HindiSentenceEmbeddings(Embeddings):
|
473 |
+
"""
|
474 |
+
Custom Langchain Embeddings class for Hindi sentence embeddings model
|
475 |
+
"""
|
476 |
+
def __init__(self, model, tokenizer, device="cuda", batch_size=32, max_length=128):
|
477 |
+
"""Initialize with model, tokenizer, and inference parameters"""
|
478 |
+
self.model = model
|
479 |
+
self.tokenizer = tokenizer
|
480 |
+
self.device = device
|
481 |
+
self.batch_size = batch_size
|
482 |
+
self.max_length = max_length
|
483 |
+
|
484 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
485 |
+
"""Embed a list of documents/texts"""
|
486 |
+
embeddings = []
|
487 |
+
|
488 |
+
with torch.no_grad():
|
489 |
+
for i in range(0, len(texts), self.batch_size):
|
490 |
+
batch = texts[i:i+self.batch_size]
|
491 |
+
|
492 |
+
# Tokenize
|
493 |
+
inputs = self.tokenizer(
|
494 |
+
batch,
|
495 |
+
padding="max_length",
|
496 |
+
truncation=True,
|
497 |
+
max_length=self.max_length,
|
498 |
+
return_tensors="pt"
|
499 |
+
)
|
500 |
+
|
501 |
+
# Move to device
|
502 |
+
input_ids = inputs["input_ids"].to(self.device)
|
503 |
+
attention_mask = inputs["attention_mask"].to(self.device)
|
504 |
+
|
505 |
+
# Get embeddings
|
506 |
+
batch_embeddings = self.model(input_ids, attention_mask)
|
507 |
+
|
508 |
+
# Move to CPU and convert to numpy
|
509 |
+
batch_embeddings = batch_embeddings.cpu().numpy()
|
510 |
+
embeddings.append(batch_embeddings)
|
511 |
+
|
512 |
+
return np.vstack(embeddings).tolist()
|
513 |
+
|
514 |
+
def embed_query(self, text: str) -> List[float]:
|
515 |
+
"""Embed a single query/text"""
|
516 |
+
return self.embed_documents([text])[0]
|
517 |
+
|
518 |
+
def extract_relevant_sentences(text, query, window_size=2):
|
519 |
+
"""
|
520 |
+
Extract the most relevant sentences from text based on query keywords
|
521 |
+
|
522 |
+
Args:
|
523 |
+
text: The full text content
|
524 |
+
query: The user's query
|
525 |
+
window_size: Number of sentences to include before and after matched sentence
|
526 |
+
|
527 |
+
Returns:
|
528 |
+
String containing the most relevant portion of the text
|
529 |
+
"""
|
530 |
+
# Clean and normalize query and text for matching
|
531 |
+
query = query.strip().lower()
|
532 |
+
|
533 |
+
# Remove question marks and other punctuation from query for matching
|
534 |
+
query = re.sub(r'[?।॥!,.:]', '', query)
|
535 |
+
|
536 |
+
# Extract keywords from the query (remove common Hindi stop words)
|
537 |
+
stop_words = ['और', 'का', 'के', 'को', 'में', 'से', 'है', 'हैं', 'था', 'थे', 'की', 'कि', 'पर', 'एक', 'यह', 'वह', 'जो', 'ने', 'हो', 'कर']
|
538 |
+
query_terms = [word for word in query.split() if word not in stop_words]
|
539 |
+
|
540 |
+
if not query_terms:
|
541 |
+
return text # If no meaningful terms left, return the full text
|
542 |
+
|
543 |
+
# Split text into sentences (using Hindi sentence terminators)
|
544 |
+
sentences = re.split(r'([।॥!?.])', text)
|
545 |
+
|
546 |
+
# Rejoin sentences with their terminators
|
547 |
+
complete_sentences = []
|
548 |
+
for i in range(0, len(sentences)-1, 2):
|
549 |
+
if i+1 < len(sentences):
|
550 |
+
complete_sentences.append(sentences[i] + sentences[i+1])
|
551 |
+
else:
|
552 |
+
complete_sentences.append(sentences[i])
|
553 |
+
|
554 |
+
# If the above didn't work properly, try simpler approach
|
555 |
+
if len(complete_sentences) <= 1:
|
556 |
+
complete_sentences = re.split(r'[।॥!?.]', text)
|
557 |
+
complete_sentences = [s.strip() for s in complete_sentences if s.strip()]
|
558 |
+
|
559 |
+
# Score each sentence based on how many query terms it contains
|
560 |
+
sentence_scores = []
|
561 |
+
for i, sentence in enumerate(complete_sentences):
|
562 |
+
sentence_lower = sentence.lower()
|
563 |
+
# Calculate score based on number of query terms found
|
564 |
+
score = sum(1 for term in query_terms if term in sentence_lower)
|
565 |
+
sentence_scores.append((i, score))
|
566 |
+
|
567 |
+
# Find the best matching sentence
|
568 |
+
if not sentence_scores:
|
569 |
+
return text[:500] + "..." # Fallback
|
570 |
+
|
571 |
+
# Get the index of sentence with highest score
|
572 |
+
best_match_idx, best_score = max(sentence_scores, key=lambda x: x[1])
|
573 |
+
|
574 |
+
# If no good match found, return the whole text (up to a limit)
|
575 |
+
if best_score == 0:
|
576 |
+
# Try partial word matching as a fallback
|
577 |
+
for i, sentence in enumerate(complete_sentences):
|
578 |
+
sentence_lower = sentence.lower()
|
579 |
+
partial_score = sum(1 for term in query_terms if any(term in word.lower() for word in sentence_lower.split()))
|
580 |
+
if partial_score > 0:
|
581 |
+
best_match_idx = i
|
582 |
+
break
|
583 |
+
else:
|
584 |
+
# If still no match, just return the first part of the text
|
585 |
+
if len(text) > 1000:
|
586 |
+
return text[:1000] + "..."
|
587 |
+
return text
|
588 |
+
|
589 |
+
# Get window of sentences around the best match
|
590 |
+
start_idx = max(0, best_match_idx - window_size)
|
591 |
+
end_idx = min(len(complete_sentences), best_match_idx + window_size + 1)
|
592 |
+
|
593 |
+
# Create excerpt
|
594 |
+
relevant_text = ' '.join(complete_sentences[start_idx:end_idx])
|
595 |
+
|
596 |
+
# If the excerpt is short, return more context
|
597 |
+
if len(relevant_text) < 100 and len(text) > len(relevant_text):
|
598 |
+
# Add more context
|
599 |
+
if end_idx < len(complete_sentences):
|
600 |
+
relevant_text += ' ' + ' '.join(complete_sentences[end_idx:end_idx+2])
|
601 |
+
if start_idx > 0:
|
602 |
+
relevant_text = ' '.join(complete_sentences[max(0, start_idx-2):start_idx]) + ' ' + relevant_text
|
603 |
+
|
604 |
+
# If the excerpt is too short or the whole text is small anyway, return whole text
|
605 |
+
if len(relevant_text) < 50 or len(text) < 1000:
|
606 |
+
return text
|
607 |
+
|
608 |
+
return relevant_text
|
609 |
+
|
610 |
+
# Text processing and indexing functions
|
611 |
+
def load_and_process_text_file(file_path, chunk_size=500, chunk_overlap=100):
|
612 |
+
"""
|
613 |
+
Load a text file and split it into semantically meaningful chunks
|
614 |
+
"""
|
615 |
+
print(f"Loading and processing text file: {file_path}")
|
616 |
+
|
617 |
+
# Read the file content
|
618 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
619 |
+
content = f.read()
|
620 |
+
|
621 |
+
# For small files, just keep the whole content as a single chunk
|
622 |
+
if len(content) <= chunk_size * 2:
|
623 |
+
print(f"File content is small, keeping as a single chunk")
|
624 |
+
return [Document(
|
625 |
+
page_content=content,
|
626 |
+
metadata={
|
627 |
+
"source": file_path,
|
628 |
+
"chunk_id": 0
|
629 |
+
}
|
630 |
+
)]
|
631 |
+
|
632 |
+
# Split by paragraphs first
|
633 |
+
paragraphs = re.split(r'\n\s*\n', content)
|
634 |
+
chunks = []
|
635 |
+
|
636 |
+
current_chunk = ""
|
637 |
+
current_size = 0
|
638 |
+
|
639 |
+
for para in paragraphs:
|
640 |
+
if not para.strip():
|
641 |
+
continue
|
642 |
+
|
643 |
+
# If adding this paragraph would exceed the chunk size, save current chunk and start new one
|
644 |
+
if current_size + len(para) > chunk_size and current_size > 0:
|
645 |
+
chunks.append(current_chunk)
|
646 |
+
current_chunk = para
|
647 |
+
current_size = len(para)
|
648 |
+
else:
|
649 |
+
# Add paragraph to current chunk with a newline if not empty
|
650 |
+
if current_size > 0:
|
651 |
+
current_chunk += "\n\n" + para
|
652 |
+
else:
|
653 |
+
current_chunk = para
|
654 |
+
current_size = len(current_chunk)
|
655 |
+
|
656 |
+
# Add the last chunk if not empty
|
657 |
+
if current_chunk:
|
658 |
+
chunks.append(current_chunk)
|
659 |
+
|
660 |
+
print(f"Split text into {len(chunks)} chunks")
|
661 |
+
|
662 |
+
# Convert to LangChain documents with metadata
|
663 |
+
documents = [
|
664 |
+
Document(
|
665 |
+
page_content=chunk,
|
666 |
+
metadata={
|
667 |
+
"source": file_path,
|
668 |
+
"chunk_id": i
|
669 |
+
}
|
670 |
+
) for i, chunk in enumerate(chunks)
|
671 |
+
]
|
672 |
+
|
673 |
+
return documents
|
674 |
+
|
675 |
+
def create_vector_store(documents, embeddings, store_path=None):
|
676 |
+
"""
|
677 |
+
Create a FAISS vector store from documents using the given embeddings
|
678 |
+
"""
|
679 |
+
print("Creating FAISS vector store...")
|
680 |
+
|
681 |
+
# Create vector store
|
682 |
+
vector_store = LangchainFAISS.from_documents(documents, embeddings)
|
683 |
+
|
684 |
+
# Save if path is provided
|
685 |
+
if store_path:
|
686 |
+
print(f"Saving vector store to {store_path}")
|
687 |
+
vector_store.save_local(store_path)
|
688 |
+
|
689 |
+
return vector_store
|
690 |
+
|
691 |
+
def load_vector_store(store_path, embeddings):
|
692 |
+
"""
|
693 |
+
Load a FAISS vector store from disk
|
694 |
+
"""
|
695 |
+
print(f"Loading vector store from {store_path}")
|
696 |
+
return LangchainFAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
|
697 |
+
|
698 |
+
def perform_similarity_search(vector_store, query, k=6):
|
699 |
+
"""
|
700 |
+
Perform basic similarity search on the vector store
|
701 |
+
"""
|
702 |
+
print(f"Searching for: {query}")
|
703 |
+
return vector_store.similarity_search_with_score(query, k=k)
|
704 |
+
|
705 |
+
# Main RAG functions
|
706 |
+
def index_text_files(model, tokenizer, data_dir, output_dir, device="cuda", chunk_size=500):
|
707 |
+
"""
|
708 |
+
Index text files from a directory and create a FAISS vector store
|
709 |
+
"""
|
710 |
+
print(f"Indexing text files from {data_dir} with chunk size ({chunk_size}) for fine-grained retrieval")
|
711 |
+
|
712 |
+
# Create embedding model
|
713 |
+
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
|
714 |
+
|
715 |
+
# Create output directory if it doesn't exist
|
716 |
+
os.makedirs(output_dir, exist_ok=True)
|
717 |
+
|
718 |
+
# Get all text files
|
719 |
+
text_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.txt')]
|
720 |
+
print(f"Found {len(text_files)} text files")
|
721 |
+
|
722 |
+
# Process all text files
|
723 |
+
all_documents = []
|
724 |
+
for file_path in text_files:
|
725 |
+
documents = load_and_process_text_file(file_path, chunk_size=chunk_size)
|
726 |
+
all_documents.extend(documents)
|
727 |
+
|
728 |
+
print(f"Total documents: {len(all_documents)}")
|
729 |
+
|
730 |
+
# If we don't have enough chunks, reduce chunk size and try again
|
731 |
+
if len(all_documents) < 10 and chunk_size > 50:
|
732 |
+
print(f"Not enough chunks created. Reducing chunk size and trying again...")
|
733 |
+
return index_text_files(model, tokenizer, data_dir, output_dir, device, chunk_size=chunk_size//2)
|
734 |
+
|
735 |
+
# Create and save vector store
|
736 |
+
vector_store_path = os.path.join(output_dir, "faiss_index")
|
737 |
+
vector_store = create_vector_store(all_documents, embeddings, vector_store_path)
|
738 |
+
|
739 |
+
return vector_store, embeddings
|
740 |
+
|
741 |
+
def query_text_corpus(model, tokenizer, vector_store_path, query, k=6, device="cuda"):
|
742 |
+
"""
|
743 |
+
Query the text corpus using the indexed vector store
|
744 |
+
"""
|
745 |
+
# Create embedding model
|
746 |
+
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
|
747 |
+
|
748 |
+
# Load vector store
|
749 |
+
vector_store = load_vector_store(vector_store_path, embeddings)
|
750 |
+
|
751 |
+
# Perform similarity search
|
752 |
+
results = perform_similarity_search(vector_store, query, k=k)
|
753 |
+
|
754 |
+
# Post-process results to combine adjacent chunks if they're from the same source
|
755 |
+
processed_results = []
|
756 |
+
seen_chunks = set()
|
757 |
+
|
758 |
+
for doc, score in results:
|
759 |
+
chunk_id = doc.metadata["chunk_id"]
|
760 |
+
source = doc.metadata["source"]
|
761 |
+
|
762 |
+
# Skip if we've already included this chunk
|
763 |
+
if (source, chunk_id) in seen_chunks:
|
764 |
+
continue
|
765 |
+
|
766 |
+
seen_chunks.add((source, chunk_id))
|
767 |
+
|
768 |
+
# Try to find adjacent chunks and combine them
|
769 |
+
combined_content = doc.page_content
|
770 |
+
|
771 |
+
# Look for adjacent chunks in results (both previous and next)
|
772 |
+
for adj_id in [chunk_id-1, chunk_id+1]:
|
773 |
+
for other_doc, _ in results:
|
774 |
+
if (other_doc.metadata["source"] == source and
|
775 |
+
other_doc.metadata["chunk_id"] == adj_id and
|
776 |
+
(source, adj_id) not in seen_chunks):
|
777 |
+
|
778 |
+
# Add the adjacent chunk content
|
779 |
+
if adj_id < chunk_id: # Previous chunk
|
780 |
+
combined_content = other_doc.page_content + " " + combined_content
|
781 |
+
else: # Next chunk
|
782 |
+
combined_content = combined_content + " " + other_doc.page_content
|
783 |
+
|
784 |
+
seen_chunks.add((source, adj_id))
|
785 |
+
|
786 |
+
# Create a new document with combined content
|
787 |
+
combined_doc = Document(
|
788 |
+
page_content=combined_content,
|
789 |
+
metadata={
|
790 |
+
"source": source,
|
791 |
+
"chunk_id": chunk_id,
|
792 |
+
"is_combined": True if combined_content != doc.page_content else False
|
793 |
+
}
|
794 |
+
)
|
795 |
+
|
796 |
+
processed_results.append((combined_doc, score))
|
797 |
+
|
798 |
+
return processed_results
|
799 |
+
|
800 |
+
def main():
|
801 |
+
parser = argparse.ArgumentParser(description="Hindi RAG System with LangChain and FAISS")
|
802 |
+
parser.add_argument("--model_dir", type=str, default="/home/ubuntu/output/hindi-embeddings-custom-tokenizer/final",
|
803 |
+
help="Directory containing the model and tokenizer")
|
804 |
+
parser.add_argument("--tokenizer_dir", type=str, default="/home/ubuntu/hindi_tokenizer",
|
805 |
+
help="Directory containing the tokenizer")
|
806 |
+
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
|
807 |
+
help="Device to run inference on ('cuda' or 'cpu')")
|
808 |
+
parser.add_argument("--index", action="store_true",
|
809 |
+
help="Index text files from data directory")
|
810 |
+
parser.add_argument("--query", type=str, default=None,
|
811 |
+
help="Query to search in the indexed corpus")
|
812 |
+
parser.add_argument("--data_dir", type=str, default="./data",
|
813 |
+
help="Directory containing text files for indexing")
|
814 |
+
parser.add_argument("--output_dir", type=str, default="./output",
|
815 |
+
help="Directory to save the indexed vector store")
|
816 |
+
parser.add_argument("--top_k", type=int, default=6,
|
817 |
+
help="Number of top results to return")
|
818 |
+
parser.add_argument("--chunk_size", type=int, default=500,
|
819 |
+
help="Size of text chunks for indexing")
|
820 |
+
parser.add_argument("--interactive", action="store_true",
|
821 |
+
help="Run in interactive mode for querying")
|
822 |
+
parser.add_argument("--reindex", action="store_true",
|
823 |
+
help="Force reindexing even if index exists")
|
824 |
+
args = parser.parse_args()
|
825 |
+
|
826 |
+
# Load model and tokenizer
|
827 |
+
model, tokenizer, config = load_model_and_tokenizer(args.model_dir, args.tokenizer_dir)
|
828 |
+
|
829 |
+
# Move model to device
|
830 |
+
model = model.to(args.device)
|
831 |
+
|
832 |
+
# Create vector store path
|
833 |
+
vector_store_path = os.path.join(args.output_dir, "faiss_index")
|
834 |
+
|
835 |
+
if args.index or args.reindex:
|
836 |
+
# Index text files
|
837 |
+
index_text_files(model, tokenizer, args.data_dir, args.output_dir, args.device, args.chunk_size)
|
838 |
+
print(f"Indexing complete. Vector store saved to {vector_store_path}")
|
839 |
+
|
840 |
+
if args.query:
|
841 |
+
# Query the corpus
|
842 |
+
results = query_text_corpus(model, tokenizer, vector_store_path, args.query, args.top_k, args.device)
|
843 |
+
|
844 |
+
# Print results
|
845 |
+
print("\nSearch Results:")
|
846 |
+
for i, (doc, score) in enumerate(results):
|
847 |
+
print(f"\nResult {i+1} (Score: {score:.4f}):")
|
848 |
+
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
|
849 |
+
|
850 |
+
# Extract and print only relevant sentences
|
851 |
+
relevant_text = extract_relevant_sentences(doc.page_content, args.query)
|
852 |
+
print(f"Content: {relevant_text}")
|
853 |
+
|
854 |
+
if args.interactive:
|
855 |
+
print("\nInteractive mode. Enter queries (or type 'quit' to exit).")
|
856 |
+
|
857 |
+
while True:
|
858 |
+
print("\nEnter query:")
|
859 |
+
query = input()
|
860 |
+
|
861 |
+
if not query.strip():
|
862 |
+
continue
|
863 |
+
|
864 |
+
if query.lower() == 'quit':
|
865 |
+
break
|
866 |
+
|
867 |
+
# Query the corpus
|
868 |
+
results = query_text_corpus(model, tokenizer, vector_store_path, query, args.top_k, args.device)
|
869 |
+
|
870 |
+
# Print results
|
871 |
+
print("\nSearch Results:")
|
872 |
+
for i, (doc, score) in enumerate(results):
|
873 |
+
print(f"\nResult {i+1} (Score: {score:.4f}):")
|
874 |
+
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
|
875 |
+
|
876 |
+
# Extract and print only relevant sentences
|
877 |
+
relevant_text = extract_relevant_sentences(doc.page_content, query)
|
878 |
+
print(f"Content: {relevant_text}")
|
879 |
+
|
880 |
+
if __name__ == "__main__":
|
881 |
+
main()
|
hindi-rag-system.py.amltmp
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import re
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import sentencepiece as spm
|
10 |
+
import math
|
11 |
+
from safetensors.torch import save_file, load_file
|
12 |
+
from tqdm import tqdm
|
13 |
+
import faiss
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.vectorstores import FAISS as LangchainFAISS
|
16 |
+
from langchain.docstore.document import Document
|
17 |
+
from langchain.embeddings.base import Embeddings
|
18 |
+
from typing import List, Dict, Any, Optional, Callable
|
19 |
+
|
20 |
+
# Tokenizer wrapper class - same as in original code
|
21 |
+
class SentencePieceTokenizerWrapper:
|
22 |
+
def __init__(self, sp_model_path):
|
23 |
+
self.sp_model = spm.SentencePieceProcessor()
|
24 |
+
self.sp_model.Load(sp_model_path)
|
25 |
+
self.vocab_size = self.sp_model.GetPieceSize()
|
26 |
+
|
27 |
+
# Special token IDs from tokenizer training
|
28 |
+
self.pad_token_id = 0
|
29 |
+
self.bos_token_id = 1
|
30 |
+
self.eos_token_id = 2
|
31 |
+
self.unk_token_id = 3
|
32 |
+
|
33 |
+
# Set special tokens
|
34 |
+
self.pad_token = "<pad>"
|
35 |
+
self.bos_token = "<s>"
|
36 |
+
self.eos_token = "</s>"
|
37 |
+
self.unk_token = "<unk>"
|
38 |
+
self.mask_token = "<mask>"
|
39 |
+
|
40 |
+
def __call__(self, text, padding=False, truncation=False, max_length=None, return_tensors=None):
|
41 |
+
# Handle both string and list inputs
|
42 |
+
if isinstance(text, str):
|
43 |
+
# Encode a single string
|
44 |
+
ids = self.sp_model.EncodeAsIds(text)
|
45 |
+
|
46 |
+
# Handle truncation
|
47 |
+
if truncation and max_length and len(ids) > max_length:
|
48 |
+
ids = ids[:max_length]
|
49 |
+
|
50 |
+
attention_mask = [1] * len(ids)
|
51 |
+
|
52 |
+
# Handle padding
|
53 |
+
if padding and max_length:
|
54 |
+
padding_length = max(0, max_length - len(ids))
|
55 |
+
ids = ids + [self.pad_token_id] * padding_length
|
56 |
+
attention_mask = attention_mask + [0] * padding_length
|
57 |
+
|
58 |
+
result = {
|
59 |
+
'input_ids': ids,
|
60 |
+
'attention_mask': attention_mask
|
61 |
+
}
|
62 |
+
|
63 |
+
# Convert to tensors if requested
|
64 |
+
if return_tensors == 'pt':
|
65 |
+
import torch
|
66 |
+
result = {k: torch.tensor([v]) for k, v in result.items()}
|
67 |
+
|
68 |
+
return result
|
69 |
+
|
70 |
+
# Process a batch of texts
|
71 |
+
batch_encoded = [self.sp_model.EncodeAsIds(t) for t in text]
|
72 |
+
|
73 |
+
# Apply truncation if needed
|
74 |
+
if truncation and max_length:
|
75 |
+
batch_encoded = [ids[:max_length] for ids in batch_encoded]
|
76 |
+
|
77 |
+
# Create attention masks
|
78 |
+
batch_attention_mask = [[1] * len(ids) for ids in batch_encoded]
|
79 |
+
|
80 |
+
# Apply padding if needed
|
81 |
+
if padding:
|
82 |
+
if max_length:
|
83 |
+
max_len = max_length
|
84 |
+
else:
|
85 |
+
max_len = max(len(ids) for ids in batch_encoded)
|
86 |
+
|
87 |
+
# Pad sequences to max_len
|
88 |
+
batch_encoded = [ids + [self.pad_token_id] * (max_len - len(ids)) for ids in batch_encoded]
|
89 |
+
batch_attention_mask = [mask + [0] * (max_len - len(mask)) for mask in batch_attention_mask]
|
90 |
+
|
91 |
+
result = {
|
92 |
+
'input_ids': batch_encoded,
|
93 |
+
'attention_mask': batch_attention_mask
|
94 |
+
}
|
95 |
+
|
96 |
+
# Convert to tensors if requested
|
97 |
+
if return_tensors == 'pt':
|
98 |
+
import torch
|
99 |
+
result = {k: torch.tensor(v) for k, v in result.items()}
|
100 |
+
|
101 |
+
return result
|
102 |
+
|
103 |
+
# Model architecture definitions for inference
|
104 |
+
|
105 |
+
class MultiHeadAttention(nn.Module):
|
106 |
+
"""Advanced multi-headed attention with relative positional encoding"""
|
107 |
+
def __init__(self, config):
|
108 |
+
super().__init__()
|
109 |
+
self.num_attention_heads = config["num_attention_heads"]
|
110 |
+
self.attention_head_size = config["hidden_size"] // config["num_attention_heads"]
|
111 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
112 |
+
|
113 |
+
# Query, Key, Value projections
|
114 |
+
self.query = nn.Linear(config["hidden_size"], self.all_head_size)
|
115 |
+
self.key = nn.Linear(config["hidden_size"], self.all_head_size)
|
116 |
+
self.value = nn.Linear(config["hidden_size"], self.all_head_size)
|
117 |
+
|
118 |
+
# Output projection
|
119 |
+
self.output = nn.Sequential(
|
120 |
+
nn.Linear(self.all_head_size, config["hidden_size"]),
|
121 |
+
nn.Dropout(config["attention_probs_dropout_prob"])
|
122 |
+
)
|
123 |
+
|
124 |
+
# Simplified relative position bias approach
|
125 |
+
self.max_position_embeddings = config["max_position_embeddings"]
|
126 |
+
self.relative_attention_bias = nn.Embedding(
|
127 |
+
2 * config["max_position_embeddings"] - 1,
|
128 |
+
config["num_attention_heads"]
|
129 |
+
)
|
130 |
+
|
131 |
+
def transpose_for_scores(self, x):
|
132 |
+
new_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
133 |
+
x = x.view(*new_shape)
|
134 |
+
return x.permute(0, 2, 1, 3)
|
135 |
+
|
136 |
+
def forward(self, hidden_states, attention_mask=None):
|
137 |
+
batch_size, seq_length = hidden_states.size()[:2]
|
138 |
+
|
139 |
+
# Project inputs to queries, keys, and values
|
140 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
141 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
142 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
143 |
+
|
144 |
+
# Take the dot product between query and key to get the raw attention scores
|
145 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
146 |
+
|
147 |
+
# Generate relative position matrix
|
148 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device)
|
149 |
+
relative_position = position_ids.unsqueeze(1) - position_ids.unsqueeze(0) # [seq_len, seq_len]
|
150 |
+
# Shift values to be >= 0
|
151 |
+
relative_position = relative_position + self.max_position_embeddings - 1
|
152 |
+
# Ensure indices are within bounds
|
153 |
+
relative_position = torch.clamp(relative_position, 0, 2 * self.max_position_embeddings - 2)
|
154 |
+
|
155 |
+
# Get relative position embeddings [seq_len, seq_len, num_heads]
|
156 |
+
rel_attn_bias = self.relative_attention_bias(relative_position) # [seq_len, seq_len, num_heads]
|
157 |
+
|
158 |
+
# Reshape to add to attention heads [1, num_heads, seq_len, seq_len]
|
159 |
+
rel_attn_bias = rel_attn_bias.permute(2, 0, 1).unsqueeze(0)
|
160 |
+
|
161 |
+
# Add to attention scores - now dimensions will match
|
162 |
+
attention_scores = attention_scores + rel_attn_bias
|
163 |
+
|
164 |
+
# Scale attention scores
|
165 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
166 |
+
|
167 |
+
# Apply attention mask
|
168 |
+
if attention_mask is not None:
|
169 |
+
attention_scores = attention_scores + attention_mask
|
170 |
+
|
171 |
+
# Normalize the attention scores to probabilities
|
172 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
173 |
+
|
174 |
+
# Apply dropout
|
175 |
+
attention_probs = F.dropout(attention_probs, p=0.1, training=self.training)
|
176 |
+
|
177 |
+
# Apply attention to values
|
178 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
179 |
+
|
180 |
+
# Reshape back to [batch_size, seq_length, hidden_size]
|
181 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
182 |
+
new_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
183 |
+
context_layer = context_layer.view(*new_shape)
|
184 |
+
|
185 |
+
# Final output projection
|
186 |
+
output = self.output(context_layer)
|
187 |
+
|
188 |
+
return output
|
189 |
+
|
190 |
+
class EnhancedTransformerLayer(nn.Module):
|
191 |
+
"""Advanced transformer layer with pre-layer norm and enhanced attention"""
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.attention_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
195 |
+
self.attention = MultiHeadAttention(config)
|
196 |
+
|
197 |
+
self.ffn_pre_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
198 |
+
|
199 |
+
# Feed-forward network
|
200 |
+
self.ffn = nn.Sequential(
|
201 |
+
nn.Linear(config["hidden_size"], config["intermediate_size"]),
|
202 |
+
nn.GELU(),
|
203 |
+
nn.Dropout(config["hidden_dropout_prob"]),
|
204 |
+
nn.Linear(config["intermediate_size"], config["hidden_size"]),
|
205 |
+
nn.Dropout(config["hidden_dropout_prob"])
|
206 |
+
)
|
207 |
+
|
208 |
+
def forward(self, hidden_states, attention_mask=None):
|
209 |
+
# Pre-layer norm for attention
|
210 |
+
attn_norm_hidden = self.attention_pre_norm(hidden_states)
|
211 |
+
|
212 |
+
# Self-attention
|
213 |
+
attention_output = self.attention(attn_norm_hidden, attention_mask)
|
214 |
+
|
215 |
+
# Residual connection
|
216 |
+
hidden_states = hidden_states + attention_output
|
217 |
+
|
218 |
+
# Pre-layer norm for feed-forward
|
219 |
+
ffn_norm_hidden = self.ffn_pre_norm(hidden_states)
|
220 |
+
|
221 |
+
# Feed-forward
|
222 |
+
ffn_output = self.ffn(ffn_norm_hidden)
|
223 |
+
|
224 |
+
# Residual connection
|
225 |
+
hidden_states = hidden_states + ffn_output
|
226 |
+
|
227 |
+
return hidden_states
|
228 |
+
|
229 |
+
class AdvancedTransformerModel(nn.Module):
|
230 |
+
"""Advanced Transformer model for inference"""
|
231 |
+
|
232 |
+
def __init__(self, config):
|
233 |
+
super().__init__()
|
234 |
+
self.config = config
|
235 |
+
|
236 |
+
# Embeddings
|
237 |
+
self.word_embeddings = nn.Embedding(
|
238 |
+
config["vocab_size"],
|
239 |
+
config["hidden_size"],
|
240 |
+
padding_idx=config["pad_token_id"]
|
241 |
+
)
|
242 |
+
|
243 |
+
# Position embeddings
|
244 |
+
self.position_embeddings = nn.Embedding(config["max_position_embeddings"], config["hidden_size"])
|
245 |
+
|
246 |
+
# Embedding dropout
|
247 |
+
self.embedding_dropout = nn.Dropout(config["hidden_dropout_prob"])
|
248 |
+
|
249 |
+
# Transformer layers
|
250 |
+
self.layers = nn.ModuleList([
|
251 |
+
EnhancedTransformerLayer(config) for _ in range(config["num_hidden_layers"])
|
252 |
+
])
|
253 |
+
|
254 |
+
# Final layer norm
|
255 |
+
self.final_layer_norm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
256 |
+
|
257 |
+
def forward(self, input_ids, attention_mask=None):
|
258 |
+
input_shape = input_ids.size()
|
259 |
+
batch_size, seq_length = input_shape
|
260 |
+
|
261 |
+
# Get position ids
|
262 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
263 |
+
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
|
264 |
+
|
265 |
+
# Get embeddings
|
266 |
+
word_embeds = self.word_embeddings(input_ids)
|
267 |
+
position_embeds = self.position_embeddings(position_ids)
|
268 |
+
|
269 |
+
# Sum embeddings
|
270 |
+
embeddings = word_embeds + position_embeds
|
271 |
+
|
272 |
+
# Apply dropout
|
273 |
+
embeddings = self.embedding_dropout(embeddings)
|
274 |
+
|
275 |
+
# Default attention mask
|
276 |
+
if attention_mask is None:
|
277 |
+
attention_mask = torch.ones(input_shape, device=input_ids.device)
|
278 |
+
|
279 |
+
# Extended attention mask for transformer layers (1 for tokens to attend to, 0 for masked tokens)
|
280 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
281 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
282 |
+
|
283 |
+
# Apply transformer layers
|
284 |
+
hidden_states = embeddings
|
285 |
+
for layer in self.layers:
|
286 |
+
hidden_states = layer(hidden_states, extended_attention_mask)
|
287 |
+
|
288 |
+
# Final layer norm
|
289 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
290 |
+
|
291 |
+
return hidden_states
|
292 |
+
|
293 |
+
class AdvancedPooling(nn.Module):
|
294 |
+
"""Advanced pooling module supporting multiple pooling strategies"""
|
295 |
+
def __init__(self, config):
|
296 |
+
super().__init__()
|
297 |
+
self.pooling_mode = config["pooling_mode"] # 'mean', 'max', 'cls', 'attention'
|
298 |
+
self.hidden_size = config["hidden_size"]
|
299 |
+
|
300 |
+
# For attention pooling
|
301 |
+
if self.pooling_mode == 'attention':
|
302 |
+
self.attention_weights = nn.Linear(config["hidden_size"], 1)
|
303 |
+
|
304 |
+
# For weighted pooling
|
305 |
+
elif self.pooling_mode == 'weighted':
|
306 |
+
self.weight_layer = nn.Linear(config["hidden_size"], 1)
|
307 |
+
|
308 |
+
def forward(self, token_embeddings, attention_mask=None):
|
309 |
+
if attention_mask is None:
|
310 |
+
attention_mask = torch.ones_like(token_embeddings[:, :, 0])
|
311 |
+
|
312 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
313 |
+
|
314 |
+
if self.pooling_mode == 'cls':
|
315 |
+
# Use [CLS] token (first token)
|
316 |
+
pooled = token_embeddings[:, 0]
|
317 |
+
|
318 |
+
elif self.pooling_mode == 'max':
|
319 |
+
# Max pooling
|
320 |
+
token_embeddings = token_embeddings.clone()
|
321 |
+
# Set padding tokens to large negative value to exclude them from max
|
322 |
+
token_embeddings[mask_expanded == 0] = -1e9
|
323 |
+
pooled = torch.max(token_embeddings, dim=1)[0]
|
324 |
+
|
325 |
+
elif self.pooling_mode == 'attention':
|
326 |
+
# Attention pooling
|
327 |
+
weights = self.attention_weights(token_embeddings).squeeze(-1)
|
328 |
+
# Mask out padding tokens
|
329 |
+
weights = weights.masked_fill(attention_mask == 0, -1e9)
|
330 |
+
weights = F.softmax(weights, dim=1).unsqueeze(-1)
|
331 |
+
pooled = torch.sum(token_embeddings * weights, dim=1)
|
332 |
+
|
333 |
+
elif self.pooling_mode == 'weighted':
|
334 |
+
# Weighted average pooling
|
335 |
+
weights = torch.sigmoid(self.weight_layer(token_embeddings)).squeeze(-1)
|
336 |
+
# Apply mask
|
337 |
+
weights = weights * attention_mask
|
338 |
+
# Normalize weights
|
339 |
+
sum_weights = torch.sum(weights, dim=1, keepdim=True)
|
340 |
+
sum_weights = torch.clamp(sum_weights, min=1e-9)
|
341 |
+
weights = weights / sum_weights
|
342 |
+
# Apply weights
|
343 |
+
pooled = torch.sum(token_embeddings * weights.unsqueeze(-1), dim=1)
|
344 |
+
|
345 |
+
else: # Default to mean pooling
|
346 |
+
# Mean pooling
|
347 |
+
sum_embeddings = torch.sum(token_embeddings * mask_expanded, dim=1)
|
348 |
+
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
349 |
+
pooled = sum_embeddings / sum_mask
|
350 |
+
|
351 |
+
# L2 normalize
|
352 |
+
pooled = F.normalize(pooled, p=2, dim=1)
|
353 |
+
|
354 |
+
return pooled
|
355 |
+
|
356 |
+
class SentenceEmbeddingModel(nn.Module):
|
357 |
+
"""Complete sentence embedding model for inference"""
|
358 |
+
def __init__(self, config):
|
359 |
+
super(SentenceEmbeddingModel, self).__init__()
|
360 |
+
self.config = config
|
361 |
+
|
362 |
+
# Create transformer model
|
363 |
+
self.transformer = AdvancedTransformerModel(config)
|
364 |
+
|
365 |
+
# Create pooling module
|
366 |
+
self.pooling = AdvancedPooling(config)
|
367 |
+
|
368 |
+
# Build projection module if needed
|
369 |
+
if "projection_dim" in config and config["projection_dim"] > 0:
|
370 |
+
self.use_projection = True
|
371 |
+
self.projection = nn.Sequential(
|
372 |
+
nn.Linear(config["hidden_size"], config["hidden_size"]),
|
373 |
+
nn.GELU(),
|
374 |
+
nn.Linear(config["hidden_size"], config["projection_dim"]),
|
375 |
+
nn.LayerNorm(config["projection_dim"], eps=config["layer_norm_eps"])
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
self.use_projection = False
|
379 |
+
|
380 |
+
def forward(self, input_ids, attention_mask=None):
|
381 |
+
# Get token embeddings from transformer
|
382 |
+
token_embeddings = self.transformer(input_ids, attention_mask)
|
383 |
+
|
384 |
+
# Pool token embeddings
|
385 |
+
pooled_output = self.pooling(token_embeddings, attention_mask)
|
386 |
+
|
387 |
+
# Apply projection if enabled
|
388 |
+
if self.use_projection:
|
389 |
+
pooled_output = self.projection(pooled_output)
|
390 |
+
pooled_output = F.normalize(pooled_output, p=2, dim=1)
|
391 |
+
|
392 |
+
return pooled_output
|
393 |
+
|
394 |
+
def convert_to_safetensors(model_path, output_path):
|
395 |
+
"""Convert PyTorch model to safetensors format"""
|
396 |
+
print(f"Converting model from {model_path} to safetensors format...")
|
397 |
+
|
398 |
+
try:
|
399 |
+
# First try with weights_only=False to handle PyTorch 2.6+ checkpoints
|
400 |
+
checkpoint = torch.load(model_path, map_location="cpu", weights_only=False)
|
401 |
+
print("Successfully loaded checkpoint with weights_only=False")
|
402 |
+
except TypeError:
|
403 |
+
# For older PyTorch versions that don't have weights_only parameter
|
404 |
+
print("Falling back to default torch.load behavior for older PyTorch versions")
|
405 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
406 |
+
|
407 |
+
# Get model state dict
|
408 |
+
if "model_state_dict" in checkpoint:
|
409 |
+
state_dict = checkpoint["model_state_dict"]
|
410 |
+
print("Extracted model_state_dict from checkpoint")
|
411 |
+
else:
|
412 |
+
state_dict = checkpoint
|
413 |
+
print("Using entire checkpoint as state_dict")
|
414 |
+
|
415 |
+
# Save as safetensors
|
416 |
+
save_file(state_dict, output_path)
|
417 |
+
print(f"Model converted and saved to {output_path}")
|
418 |
+
|
419 |
+
def load_model_and_tokenizer(model_dir, tokenizer_dir="/home/ubuntu/hindi_tokenizer"):
|
420 |
+
"""Load the model and tokenizer for inference"""
|
421 |
+
|
422 |
+
# Load the config
|
423 |
+
config_path = os.path.join(model_dir, "config.json")
|
424 |
+
with open(config_path, "r") as f:
|
425 |
+
config = json.load(f)
|
426 |
+
|
427 |
+
# Load the tokenizer - use specified tokenizer directory
|
428 |
+
tokenizer_path = os.path.join(tokenizer_dir, "tokenizer.model")
|
429 |
+
if not os.path.exists(tokenizer_path):
|
430 |
+
# Try other locations
|
431 |
+
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
|
432 |
+
if not os.path.exists(tokenizer_path):
|
433 |
+
raise FileNotFoundError(f"Could not find tokenizer model at {tokenizer_path}")
|
434 |
+
|
435 |
+
tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
|
436 |
+
print(f"Loaded tokenizer from {tokenizer_path} with vocabulary size: {tokenizer.vocab_size}")
|
437 |
+
|
438 |
+
# Load the model
|
439 |
+
safetensors_path = os.path.join(model_dir, "embedding_model.safetensors")
|
440 |
+
|
441 |
+
if not os.path.exists(safetensors_path):
|
442 |
+
print(f"Safetensors model not found at {safetensors_path}, converting from PyTorch checkpoint...")
|
443 |
+
|
444 |
+
# Convert from PyTorch checkpoint
|
445 |
+
pytorch_path = os.path.join(model_dir, "embedding_model.pt")
|
446 |
+
if not os.path.exists(pytorch_path):
|
447 |
+
raise FileNotFoundError(f"Could not find PyTorch model at {pytorch_path}")
|
448 |
+
|
449 |
+
convert_to_safetensors(pytorch_path, safetensors_path)
|
450 |
+
|
451 |
+
# Load state dict from safetensors
|
452 |
+
state_dict = load_file(safetensors_path)
|
453 |
+
|
454 |
+
# Create model
|
455 |
+
model = SentenceEmbeddingModel(config)
|
456 |
+
|
457 |
+
# Load state dict
|
458 |
+
try:
|
459 |
+
# Try direct loading
|
460 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
461 |
+
print(f"Loaded model with missing keys: {missing_keys[:10]}{'...' if len(missing_keys) > 10 else ''}")
|
462 |
+
print(f"Unexpected keys: {unexpected_keys[:10]}{'...' if len(unexpected_keys) > 10 else ''}")
|
463 |
+
except Exception as e:
|
464 |
+
print(f"Error loading state dict: {e}")
|
465 |
+
print("Model will be initialized with random weights")
|
466 |
+
|
467 |
+
model.eval()
|
468 |
+
|
469 |
+
return model, tokenizer, config
|
470 |
+
|
471 |
+
# LangChain Custom Embeddings Class
|
472 |
+
class HindiSentenceEmbeddings(Embeddings):
|
473 |
+
"""
|
474 |
+
Custom Langchain Embeddings class for Hindi sentence embeddings model
|
475 |
+
"""
|
476 |
+
def __init__(self, model, tokenizer, device="cuda", batch_size=32, max_length=128):
|
477 |
+
"""Initialize with model, tokenizer, and inference parameters"""
|
478 |
+
self.model = model
|
479 |
+
self.tokenizer = tokenizer
|
480 |
+
self.device = device
|
481 |
+
self.batch_size = batch_size
|
482 |
+
self.max_length = max_length
|
483 |
+
|
484 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
485 |
+
"""Embed a list of documents/texts"""
|
486 |
+
embeddings = []
|
487 |
+
|
488 |
+
with torch.no_grad():
|
489 |
+
for i in range(0, len(texts), self.batch_size):
|
490 |
+
batch = texts[i:i+self.batch_size]
|
491 |
+
|
492 |
+
# Tokenize
|
493 |
+
inputs = self.tokenizer(
|
494 |
+
batch,
|
495 |
+
padding="max_length",
|
496 |
+
truncation=True,
|
497 |
+
max_length=self.max_length,
|
498 |
+
return_tensors="pt"
|
499 |
+
)
|
500 |
+
|
501 |
+
# Move to device
|
502 |
+
input_ids = inputs["input_ids"].to(self.device)
|
503 |
+
attention_mask = inputs["attention_mask"].to(self.device)
|
504 |
+
|
505 |
+
# Get embeddings
|
506 |
+
batch_embeddings = self.model(input_ids, attention_mask)
|
507 |
+
|
508 |
+
# Move to CPU and convert to numpy
|
509 |
+
batch_embeddings = batch_embeddings.cpu().numpy()
|
510 |
+
embeddings.append(batch_embeddings)
|
511 |
+
|
512 |
+
return np.vstack(embeddings).tolist()
|
513 |
+
|
514 |
+
def embed_query(self, text: str) -> List[float]:
|
515 |
+
"""Embed a single query/text"""
|
516 |
+
return self.embed_documents([text])[0]
|
517 |
+
|
518 |
+
def extract_relevant_sentences(text, query, window_size=2):
|
519 |
+
"""
|
520 |
+
Extract the most relevant sentences from text based on query keywords
|
521 |
+
|
522 |
+
Args:
|
523 |
+
text: The full text content
|
524 |
+
query: The user's query
|
525 |
+
window_size: Number of sentences to include before and after matched sentence
|
526 |
+
|
527 |
+
Returns:
|
528 |
+
String containing the most relevant portion of the text
|
529 |
+
"""
|
530 |
+
# Clean and normalize query and text for matching
|
531 |
+
query = query.strip().lower()
|
532 |
+
|
533 |
+
# Remove question marks and other punctuation from query for matching
|
534 |
+
query = re.sub(r'[?।॥!,.:]', '', query)
|
535 |
+
|
536 |
+
# Extract keywords from the query (remove common Hindi stop words)
|
537 |
+
stop_words = ['और', 'का', 'के', 'को', 'में', 'से', 'है', 'हैं', 'था', 'थे', 'की', 'कि', 'पर', 'एक', 'यह', 'वह', 'जो', 'ने', 'हो', 'कर']
|
538 |
+
query_terms = [word for word in query.split() if word not in stop_words]
|
539 |
+
|
540 |
+
if not query_terms:
|
541 |
+
return text # If no meaningful terms left, return the full text
|
542 |
+
|
543 |
+
# Split text into sentences (using Hindi sentence terminators)
|
544 |
+
sentences = re.split(r'([।॥!?.])', text)
|
545 |
+
|
546 |
+
# Rejoin sentences with their terminators
|
547 |
+
complete_sentences = []
|
548 |
+
for i in range(0, len(sentences)-1, 2):
|
549 |
+
if i+1 < len(sentences):
|
550 |
+
complete_sentences.append(sentences[i] + sentences[i+1])
|
551 |
+
else:
|
552 |
+
complete_sentences.append(sentences[i])
|
553 |
+
|
554 |
+
# If the above didn't work properly, try simpler approach
|
555 |
+
if len(complete_sentences) <= 1:
|
556 |
+
complete_sentences = re.split(r'[।॥!?.]', text)
|
557 |
+
complete_sentences = [s.strip() for s in complete_sentences if s.strip()]
|
558 |
+
|
559 |
+
# Score each sentence based on how many query terms it contains
|
560 |
+
sentence_scores = []
|
561 |
+
for i, sentence in enumerate(complete_sentences):
|
562 |
+
sentence_lower = sentence.lower()
|
563 |
+
# Calculate score based on number of query terms found
|
564 |
+
score = sum(1 for term in query_terms if term in sentence_lower)
|
565 |
+
sentence_scores.append((i, score))
|
566 |
+
|
567 |
+
# Find the best matching sentence
|
568 |
+
if not sentence_scores:
|
569 |
+
return text[:500] + "..." # Fallback
|
570 |
+
|
571 |
+
# Get the index of sentence with highest score
|
572 |
+
best_match_idx, best_score = max(sentence_scores, key=lambda x: x[1])
|
573 |
+
|
574 |
+
# If no good match found, return the whole text (up to a limit)
|
575 |
+
if best_score == 0:
|
576 |
+
# Try partial word matching as a fallback
|
577 |
+
for i, sentence in enumerate(complete_sentences):
|
578 |
+
sentence_lower = sentence.lower()
|
579 |
+
partial_score = sum(1 for term in query_terms if any(term in word.lower() for word in sentence_lower.split()))
|
580 |
+
if partial_score > 0:
|
581 |
+
best_match_idx = i
|
582 |
+
break
|
583 |
+
else:
|
584 |
+
# If still no match, just return the first part of the text
|
585 |
+
if len(text) > 1000:
|
586 |
+
return text[:1000] + "..."
|
587 |
+
return text
|
588 |
+
|
589 |
+
# Get window of sentences around the best match
|
590 |
+
start_idx = max(0, best_match_idx - window_size)
|
591 |
+
end_idx = min(len(complete_sentences), best_match_idx + window_size + 1)
|
592 |
+
|
593 |
+
# Create excerpt
|
594 |
+
relevant_text = ' '.join(complete_sentences[start_idx:end_idx])
|
595 |
+
|
596 |
+
# If the excerpt is short, return more context
|
597 |
+
if len(relevant_text) < 100 and len(text) > len(relevant_text):
|
598 |
+
# Add more context
|
599 |
+
if end_idx < len(complete_sentences):
|
600 |
+
relevant_text += ' ' + ' '.join(complete_sentences[end_idx:end_idx+2])
|
601 |
+
if start_idx > 0:
|
602 |
+
relevant_text = ' '.join(complete_sentences[max(0, start_idx-2):start_idx]) + ' ' + relevant_text
|
603 |
+
|
604 |
+
# If the excerpt is too short or the whole text is small anyway, return whole text
|
605 |
+
if len(relevant_text) < 50 or len(text) < 1000:
|
606 |
+
return text
|
607 |
+
|
608 |
+
return relevant_text
|
609 |
+
|
610 |
+
# Text processing and indexing functions
|
611 |
+
def load_and_process_text_file(file_path, chunk_size=500, chunk_overlap=100):
|
612 |
+
"""
|
613 |
+
Load a text file and split it into semantically meaningful chunks
|
614 |
+
"""
|
615 |
+
print(f"Loading and processing text file: {file_path}")
|
616 |
+
|
617 |
+
# Read the file content
|
618 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
619 |
+
content = f.read()
|
620 |
+
|
621 |
+
# For small files, just keep the whole content as a single chunk
|
622 |
+
if len(content) <= chunk_size * 2:
|
623 |
+
print(f"File content is small, keeping as a single chunk")
|
624 |
+
return [Document(
|
625 |
+
page_content=content,
|
626 |
+
metadata={
|
627 |
+
"source": file_path,
|
628 |
+
"chunk_id": 0
|
629 |
+
}
|
630 |
+
)]
|
631 |
+
|
632 |
+
# Split by paragraphs first
|
633 |
+
paragraphs = re.split(r'\n\s*\n', content)
|
634 |
+
chunks = []
|
635 |
+
|
636 |
+
current_chunk = ""
|
637 |
+
current_size = 0
|
638 |
+
|
639 |
+
for para in paragraphs:
|
640 |
+
if not para.strip():
|
641 |
+
continue
|
642 |
+
|
643 |
+
# If adding this paragraph would exceed the chunk size, save current chunk and start new one
|
644 |
+
if current_size + len(para) > chunk_size and current_size > 0:
|
645 |
+
chunks.append(current_chunk)
|
646 |
+
current_chunk = para
|
647 |
+
current_size = len(para)
|
648 |
+
else:
|
649 |
+
# Add paragraph to current chunk with a newline if not empty
|
650 |
+
if current_size > 0:
|
651 |
+
current_chunk += "\n\n" + para
|
652 |
+
else:
|
653 |
+
current_chunk = para
|
654 |
+
current_size = len(current_chunk)
|
655 |
+
|
656 |
+
# Add the last chunk if not empty
|
657 |
+
if current_chunk:
|
658 |
+
chunks.append(current_chunk)
|
659 |
+
|
660 |
+
print(f"Split text into {len(chunks)} chunks")
|
661 |
+
|
662 |
+
# Convert to LangChain documents with metadata
|
663 |
+
documents = [
|
664 |
+
Document(
|
665 |
+
page_content=chunk,
|
666 |
+
metadata={
|
667 |
+
"source": file_path,
|
668 |
+
"chunk_id": i
|
669 |
+
}
|
670 |
+
) for i, chunk in enumerate(chunks)
|
671 |
+
]
|
672 |
+
|
673 |
+
return documents
|
674 |
+
|
675 |
+
def create_vector_store(documents, embeddings, store_path=None):
|
676 |
+
"""
|
677 |
+
Create a FAISS vector store from documents using the given embeddings
|
678 |
+
"""
|
679 |
+
print("Creating FAISS vector store...")
|
680 |
+
|
681 |
+
# Create vector store
|
682 |
+
vector_store = LangchainFAISS.from_documents(documents, embeddings)
|
683 |
+
|
684 |
+
# Save if path is provided
|
685 |
+
if store_path:
|
686 |
+
print(f"Saving vector store to {store_path}")
|
687 |
+
vector_store.save_local(store_path)
|
688 |
+
|
689 |
+
return vector_store
|
690 |
+
|
691 |
+
def load_vector_store(store_path, embeddings):
|
692 |
+
"""
|
693 |
+
Load a FAISS vector store from disk
|
694 |
+
"""
|
695 |
+
print(f"Loading vector store from {store_path}")
|
696 |
+
return LangchainFAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
|
697 |
+
|
698 |
+
def perform_similarity_search(vector_store, query, k=6):
|
699 |
+
"""
|
700 |
+
Perform basic similarity search on the vector store
|
701 |
+
"""
|
702 |
+
print(f"Searching for: {query}")
|
703 |
+
return vector_store.similarity_search_with_score(query, k=k)
|
704 |
+
|
705 |
+
# Main RAG functions
|
706 |
+
def index_text_files(model, tokenizer, data_dir, output_dir, device="cuda", chunk_size=500):
|
707 |
+
"""
|
708 |
+
Index text files from a directory and create a FAISS vector store
|
709 |
+
"""
|
710 |
+
print(f"Indexing text files from {data_dir} with chunk size ({chunk_size}) for fine-grained retrieval")
|
711 |
+
|
712 |
+
# Create embedding model
|
713 |
+
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
|
714 |
+
|
715 |
+
# Create output directory if it doesn't exist
|
716 |
+
os.makedirs(output_dir, exist_ok=True)
|
717 |
+
|
718 |
+
# Get all text files
|
719 |
+
text_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.txt')]
|
720 |
+
print(f"Found {len(text_files)} text files")
|
721 |
+
|
722 |
+
# Process all text files
|
723 |
+
all_documents = []
|
724 |
+
for file_path in text_files:
|
725 |
+
documents = load_and_process_text_file(file_path, chunk_size=chunk_size)
|
726 |
+
all_documents.extend(documents)
|
727 |
+
|
728 |
+
print(f"Total documents: {len(all_documents)}")
|
729 |
+
|
730 |
+
# If we don't have enough chunks, reduce chunk size and try again
|
731 |
+
if len(all_documents) < 10 and chunk_size > 50:
|
732 |
+
print(f"Not enough chunks created. Reducing chunk size and trying again...")
|
733 |
+
return index_text_files(model, tokenizer, data_dir, output_dir, device, chunk_size=chunk_size//2)
|
734 |
+
|
735 |
+
# Create and save vector store
|
736 |
+
vector_store_path = os.path.join(output_dir, "faiss_index")
|
737 |
+
vector_store = create_vector_store(all_documents, embeddings, vector_store_path)
|
738 |
+
|
739 |
+
return vector_store, embeddings
|
740 |
+
|
741 |
+
def query_text_corpus(model, tokenizer, vector_store_path, query, k=6, device="cuda"):
|
742 |
+
"""
|
743 |
+
Query the text corpus using the indexed vector store
|
744 |
+
"""
|
745 |
+
# Create embedding model
|
746 |
+
embeddings = HindiSentenceEmbeddings(model, tokenizer, device=device)
|
747 |
+
|
748 |
+
# Load vector store
|
749 |
+
vector_store = load_vector_store(vector_store_path, embeddings)
|
750 |
+
|
751 |
+
# Perform similarity search
|
752 |
+
results = perform_similarity_search(vector_store, query, k=k)
|
753 |
+
|
754 |
+
# Post-process results to combine adjacent chunks if they're from the same source
|
755 |
+
processed_results = []
|
756 |
+
seen_chunks = set()
|
757 |
+
|
758 |
+
for doc, score in results:
|
759 |
+
chunk_id = doc.metadata["chunk_id"]
|
760 |
+
source = doc.metadata["source"]
|
761 |
+
|
762 |
+
# Skip if we've already included this chunk
|
763 |
+
if (source, chunk_id) in seen_chunks:
|
764 |
+
continue
|
765 |
+
|
766 |
+
seen_chunks.add((source, chunk_id))
|
767 |
+
|
768 |
+
# Try to find adjacent chunks and combine them
|
769 |
+
combined_content = doc.page_content
|
770 |
+
|
771 |
+
# Look for adjacent chunks in results (both previous and next)
|
772 |
+
for adj_id in [chunk_id-1, chunk_id+1]:
|
773 |
+
for other_doc, _ in results:
|
774 |
+
if (other_doc.metadata["source"] == source and
|
775 |
+
other_doc.metadata["chunk_id"] == adj_id and
|
776 |
+
(source, adj_id) not in seen_chunks):
|
777 |
+
|
778 |
+
# Add the adjacent chunk content
|
779 |
+
if adj_id < chunk_id: # Previous chunk
|
780 |
+
combined_content = other_doc.page_content + " " + combined_content
|
781 |
+
else: # Next chunk
|
782 |
+
combined_content = combined_content + " " + other_doc.page_content
|
783 |
+
|
784 |
+
seen_chunks.add((source, adj_id))
|
785 |
+
|
786 |
+
# Create a new document with combined content
|
787 |
+
combined_doc = Document(
|
788 |
+
page_content=combined_content,
|
789 |
+
metadata={
|
790 |
+
"source": source,
|
791 |
+
"chunk_id": chunk_id,
|
792 |
+
"is_combined": True if combined_content != doc.page_content else False
|
793 |
+
}
|
794 |
+
)
|
795 |
+
|
796 |
+
processed_results.append((combined_doc, score))
|
797 |
+
|
798 |
+
return processed_results
|
799 |
+
|
800 |
+
def main():
|
801 |
+
parser = argparse.ArgumentParser(description="Hindi RAG System with LangChain and FAISS")
|
802 |
+
parser.add_argument("--model_dir", type=str, default="/home/ubuntu/output/hindi-embeddings-custom-tokenizer/final",
|
803 |
+
help="Directory containing the model and tokenizer")
|
804 |
+
parser.add_argument("--tokenizer_dir", type=str, default="/home/ubuntu/hindi_tokenizer",
|
805 |
+
help="Directory containing the tokenizer")
|
806 |
+
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
|
807 |
+
help="Device to run inference on ('cuda' or 'cpu')")
|
808 |
+
parser.add_argument("--index", action="store_true",
|
809 |
+
help="Index text files from data directory")
|
810 |
+
parser.add_argument("--query", type=str, default=None,
|
811 |
+
help="Query to search in the indexed corpus")
|
812 |
+
parser.add_argument("--data_dir", type=str, default="./data",
|
813 |
+
help="Directory containing text files for indexing")
|
814 |
+
parser.add_argument("--output_dir", type=str, default="./output",
|
815 |
+
help="Directory to save the indexed vector store")
|
816 |
+
parser.add_argument("--top_k", type=int, default=6,
|
817 |
+
help="Number of top results to return")
|
818 |
+
parser.add_argument("--chunk_size", type=int, default=500,
|
819 |
+
help="Size of text chunks for indexing")
|
820 |
+
parser.add_argument("--interactive", action="store_true",
|
821 |
+
help="Run in interactive mode for querying")
|
822 |
+
parser.add_argument("--reindex", action="store_true",
|
823 |
+
help="Force reindexing even if index exists")
|
824 |
+
args = parser.parse_args()
|
825 |
+
|
826 |
+
# Load model and tokenizer
|
827 |
+
model, tokenizer, config = load_model_and_tokenizer(args.model_dir, args.tokenizer_dir)
|
828 |
+
|
829 |
+
# Move model to device
|
830 |
+
model = model.to(args.device)
|
831 |
+
|
832 |
+
# Create vector store path
|
833 |
+
vector_store_path = os.path.join(args.output_dir, "faiss_index")
|
834 |
+
|
835 |
+
if args.index or args.reindex:
|
836 |
+
# Index text files
|
837 |
+
index_text_files(model, tokenizer, args.data_dir, args.output_dir, args.device, args.chunk_size)
|
838 |
+
print(f"Indexing complete. Vector store saved to {vector_store_path}")
|
839 |
+
|
840 |
+
if args.query:
|
841 |
+
# Query the corpus
|
842 |
+
results = query_text_corpus(model, tokenizer, vector_store_path, args.query, args.top_k, args.device)
|
843 |
+
|
844 |
+
# Print results
|
845 |
+
print("\nSearch Results:")
|
846 |
+
for i, (doc, score) in enumerate(results):
|
847 |
+
print(f"\nResult {i+1} (Score: {score:.4f}):")
|
848 |
+
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
|
849 |
+
|
850 |
+
# Extract and print only relevant sentences
|
851 |
+
relevant_text = extract_relevant_sentences(doc.page_content, args.query)
|
852 |
+
print(f"Content: {relevant_text}")
|
853 |
+
|
854 |
+
if args.interactive:
|
855 |
+
print("\nInteractive mode. Enter queries (or type 'quit' to exit).")
|
856 |
+
|
857 |
+
while True:
|
858 |
+
print("\nEnter query:")
|
859 |
+
query = input()
|
860 |
+
|
861 |
+
if not query.strip():
|
862 |
+
continue
|
863 |
+
|
864 |
+
if query.lower() == 'quit':
|
865 |
+
break
|
866 |
+
|
867 |
+
# Query the corpus
|
868 |
+
results = query_text_corpus(model, tokenizer, vector_store_path, query, args.top_k, args.device)
|
869 |
+
|
870 |
+
# Print results
|
871 |
+
print("\nSearch Results:")
|
872 |
+
for i, (doc, score) in enumerate(results):
|
873 |
+
print(f"\nResult {i+1} (Score: {score:.4f}):")
|
874 |
+
print(f"Source: {doc.metadata['source']}, Chunk: {doc.metadata['chunk_id']}")
|
875 |
+
|
876 |
+
# Extract and print only relevant sentences
|
877 |
+
relevant_text = extract_relevant_sentences(doc.page_content, query)
|
878 |
+
print(f"Content: {relevant_text}")
|
879 |
+
|
880 |
+
if __name__ == "__main__":
|
881 |
+
main()
|