Commit
·
55c5a1b
1
Parent(s):
0daf370
Update README.md
Browse files
README.md
CHANGED
@@ -17,9 +17,9 @@
|
|
17 |
|
18 |
|
19 |
- **Developed by:** Declan Bracken, Armando Ordorica, Michael Santorelli, Paul Zhou
|
20 |
-
- **Model type:**
|
21 |
-
- **Language(s) (NLP):**
|
22 |
-
- **Finetuned from model
|
23 |
|
24 |
### Model Sources [optional]
|
25 |
|
@@ -35,163 +35,39 @@
|
|
35 |
|
36 |
### Direct Use
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
### Recommendations
|
61 |
-
|
62 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
63 |
-
|
64 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
65 |
-
|
66 |
-
## How to Get Started with the Model
|
67 |
-
|
68 |
-
Use the code below to get started with the model.
|
69 |
-
|
70 |
-
[More Information Needed]
|
71 |
-
|
72 |
-
## Training Details
|
73 |
-
|
74 |
-
### Training Data
|
75 |
-
|
76 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
### Training Procedure
|
81 |
-
|
82 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
83 |
-
|
84 |
-
#### Preprocessing [optional]
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
|
89 |
-
#### Training Hyperparameters
|
90 |
-
|
91 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
92 |
-
|
93 |
-
#### Speeds, Sizes, Times [optional]
|
94 |
-
|
95 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
96 |
-
|
97 |
-
[More Information Needed]
|
98 |
-
|
99 |
-
## Evaluation
|
100 |
-
|
101 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
102 |
-
|
103 |
-
### Testing Data, Factors & Metrics
|
104 |
-
|
105 |
-
#### Testing Data
|
106 |
-
|
107 |
-
<!-- This should link to a Dataset Card if possible. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
#### Factors
|
112 |
-
|
113 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Metrics
|
118 |
-
|
119 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
### Results
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Summary
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
## Model Examination [optional]
|
132 |
-
|
133 |
-
<!-- Relevant interpretability work for the model goes here -->
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
## Environmental Impact
|
138 |
-
|
139 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
140 |
-
|
141 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
142 |
-
|
143 |
-
- **Hardware Type:** [More Information Needed]
|
144 |
-
- **Hours used:** [More Information Needed]
|
145 |
-
- **Cloud Provider:** [More Information Needed]
|
146 |
-
- **Compute Region:** [More Information Needed]
|
147 |
-
- **Carbon Emitted:** [More Information Needed]
|
148 |
-
|
149 |
-
## Technical Specifications [optional]
|
150 |
-
|
151 |
-
### Model Architecture and Objective
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
### Compute Infrastructure
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
#### Hardware
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Software
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
## Citation [optional]
|
168 |
-
|
169 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
170 |
-
|
171 |
-
**BibTeX:**
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
**APA:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
## Glossary [optional]
|
180 |
-
|
181 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## More Information [optional]
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## Model Card Authors [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Contact
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
|
|
|
17 |
|
18 |
|
19 |
- **Developed by:** Declan Bracken, Armando Ordorica, Michael Santorelli, Paul Zhou
|
20 |
+
- **Model type:** Transformer
|
21 |
+
- **Language(s) (NLP):** English
|
22 |
+
- **Finetuned from model:** BERT_base_uncased
|
23 |
|
24 |
### Model Sources [optional]
|
25 |
|
|
|
35 |
|
36 |
### Direct Use
|
37 |
|
38 |
+
Create a custom class to load in the model, the label encoder, and the BERT tokenizer used for training (bert-base-uncased) as below.
|
39 |
+
use the tokenizer to tokenize any input string you'd like, then pass it through the model to get outputs.
|
40 |
|
41 |
+
class BERTClassifier:
|
42 |
+
def __init__(self, model_identifier):
|
43 |
+
# Load the tokenizer from bert base uncased
|
44 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
45 |
|
46 |
+
# Load the config
|
47 |
+
config = AutoConfig.from_pretrained(model_identifier)
|
48 |
|
49 |
+
# Load the model
|
50 |
+
self.model = BertForSequenceClassification.from_pretrained(model_identifier, config=config)
|
51 |
+
self.model.eval() # Set the model to evaluation mode
|
52 |
|
53 |
+
# Load the label encoder
|
54 |
+
encoder_url = f'https://huggingface.co/{model_identifier}/resolve/main/model_encoder.pkl'
|
55 |
+
self.labels = pickle.loads(requests.get(encoder_url).content)
|
56 |
|
57 |
+
def predict_category(self, text):
|
58 |
+
# Tokenize the text
|
59 |
+
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
60 |
|
61 |
+
# Predict
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = self.model(**inputs)
|
64 |
|
65 |
+
# Get the prediction index
|
66 |
+
prediction_idx = torch.argmax(outputs.logits, dim=1).item()
|
67 |
|
68 |
+
# Decode the prediction index to get the label
|
69 |
+
prediction_label = self.labels[prediction_idx] # Use indexing for a NumPy array
|
70 |
|
71 |
+
return prediction_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|