Delete train_model.ipynb
Browse files- train_model.ipynb +0 -909
train_model.ipynb
DELETED
@@ -1,909 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "XLhB2j_Hemio"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"## Read the dataset csv file"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": null,
|
15 |
-
"metadata": {
|
16 |
-
"id": "hgYEtrYgemir",
|
17 |
-
"outputId": "d3ddedc7-8bd7-4ba9-c82e-68e4eb1309c3"
|
18 |
-
},
|
19 |
-
"outputs": [
|
20 |
-
{
|
21 |
-
"data": {
|
22 |
-
"text/html": [
|
23 |
-
"<div>\n",
|
24 |
-
"<style scoped>\n",
|
25 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
26 |
-
" vertical-align: middle;\n",
|
27 |
-
" }\n",
|
28 |
-
"\n",
|
29 |
-
" .dataframe tbody tr th {\n",
|
30 |
-
" vertical-align: top;\n",
|
31 |
-
" }\n",
|
32 |
-
"\n",
|
33 |
-
" .dataframe thead th {\n",
|
34 |
-
" text-align: right;\n",
|
35 |
-
" }\n",
|
36 |
-
"</style>\n",
|
37 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
38 |
-
" <thead>\n",
|
39 |
-
" <tr style=\"text-align: right;\">\n",
|
40 |
-
" <th></th>\n",
|
41 |
-
" <th>Unnamed: 0</th>\n",
|
42 |
-
" <th>Text</th>\n",
|
43 |
-
" <th>target</th>\n",
|
44 |
-
" </tr>\n",
|
45 |
-
" </thead>\n",
|
46 |
-
" <tbody>\n",
|
47 |
-
" <tr>\n",
|
48 |
-
" <th>0</th>\n",
|
49 |
-
" <td>0.0</td>\n",
|
50 |
-
" <td>polis tangkap</td>\n",
|
51 |
-
" <td>NonCyberbully</td>\n",
|
52 |
-
" </tr>\n",
|
53 |
-
" <tr>\n",
|
54 |
-
" <th>1</th>\n",
|
55 |
-
" <td>1.0</td>\n",
|
56 |
-
" <td>kenapa lokasi kebakaran terlalu spesifik</td>\n",
|
57 |
-
" <td>NonCyberbully</td>\n",
|
58 |
-
" </tr>\n",
|
59 |
-
" <tr>\n",
|
60 |
-
" <th>2</th>\n",
|
61 |
-
" <td>2.0</td>\n",
|
62 |
-
" <td>menyesal tanya nak for birthday</td>\n",
|
63 |
-
" <td>NonCyberbully</td>\n",
|
64 |
-
" </tr>\n",
|
65 |
-
" <tr>\n",
|
66 |
-
" <th>3</th>\n",
|
67 |
-
" <td>3.0</td>\n",
|
68 |
-
" <td>meriah tah</td>\n",
|
69 |
-
" <td>NonCyberbully</td>\n",
|
70 |
-
" </tr>\n",
|
71 |
-
" <tr>\n",
|
72 |
-
" <th>4</th>\n",
|
73 |
-
" <td>4.0</td>\n",
|
74 |
-
" <td>asal bs kelar kerja jam sik kl baru diajak mee...</td>\n",
|
75 |
-
" <td>NonCyberbully</td>\n",
|
76 |
-
" </tr>\n",
|
77 |
-
" </tbody>\n",
|
78 |
-
"</table>\n",
|
79 |
-
"</div>"
|
80 |
-
],
|
81 |
-
"text/plain": [
|
82 |
-
" Unnamed: 0 Text \\\n",
|
83 |
-
"0 0.0 polis tangkap \n",
|
84 |
-
"1 1.0 kenapa lokasi kebakaran terlalu spesifik \n",
|
85 |
-
"2 2.0 menyesal tanya nak for birthday \n",
|
86 |
-
"3 3.0 meriah tah \n",
|
87 |
-
"4 4.0 asal bs kelar kerja jam sik kl baru diajak mee... \n",
|
88 |
-
"\n",
|
89 |
-
" target \n",
|
90 |
-
"0 NonCyberbully \n",
|
91 |
-
"1 NonCyberbully \n",
|
92 |
-
"2 NonCyberbully \n",
|
93 |
-
"3 NonCyberbully \n",
|
94 |
-
"4 NonCyberbully "
|
95 |
-
]
|
96 |
-
},
|
97 |
-
"execution_count": 3,
|
98 |
-
"metadata": {},
|
99 |
-
"output_type": "execute_result"
|
100 |
-
}
|
101 |
-
],
|
102 |
-
"source": [
|
103 |
-
"import pandas as pd\n",
|
104 |
-
"df = pd.read_csv('C:/Users/user/Documents/PSM/BERT_Ver2/Transformers-Text-Classification-BERT-Blog-main/input/Tagged_MixedNew.csv')\n",
|
105 |
-
"df.head()"
|
106 |
-
]
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"cell_type": "markdown",
|
110 |
-
"metadata": {
|
111 |
-
"id": "fGUtFkVfemit"
|
112 |
-
},
|
113 |
-
"source": [
|
114 |
-
"## Process the data"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": null,
|
120 |
-
"metadata": {
|
121 |
-
"id": "7C3uRWECemiu",
|
122 |
-
"outputId": "8e764d84-010d-4e42-987a-af7162627f6e",
|
123 |
-
"colab": {
|
124 |
-
"referenced_widgets": [
|
125 |
-
"042c8b0b8dcf42eb84660c93778d8ea7",
|
126 |
-
"4ab6074437a849f79be038b043025283",
|
127 |
-
"9aed4d88c18e4e28a1efbbed94331228"
|
128 |
-
]
|
129 |
-
}
|
130 |
-
},
|
131 |
-
"outputs": [
|
132 |
-
{
|
133 |
-
"data": {
|
134 |
-
"application/vnd.jupyter.widget-view+json": {
|
135 |
-
"model_id": "042c8b0b8dcf42eb84660c93778d8ea7",
|
136 |
-
"version_major": 2,
|
137 |
-
"version_minor": 0
|
138 |
-
},
|
139 |
-
"text/plain": [
|
140 |
-
"Downloading (…)okenizer_config.json: 0%| | 0.00/380 [00:00<?, ?B/s]"
|
141 |
-
]
|
142 |
-
},
|
143 |
-
"metadata": {},
|
144 |
-
"output_type": "display_data"
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"name": "stderr",
|
148 |
-
"output_type": "stream",
|
149 |
-
"text": [
|
150 |
-
"C:\\Users\\user\\anaconda3\\lib\\site-packages\\huggingface_hub\\file_download.py:133: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\user\\.cache\\huggingface\\hub. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
151 |
-
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
152 |
-
" warnings.warn(message)\n"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"data": {
|
157 |
-
"application/vnd.jupyter.widget-view+json": {
|
158 |
-
"model_id": "4ab6074437a849f79be038b043025283",
|
159 |
-
"version_major": 2,
|
160 |
-
"version_minor": 0
|
161 |
-
},
|
162 |
-
"text/plain": [
|
163 |
-
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/233k [00:00<?, ?B/s]"
|
164 |
-
]
|
165 |
-
},
|
166 |
-
"metadata": {},
|
167 |
-
"output_type": "display_data"
|
168 |
-
},
|
169 |
-
{
|
170 |
-
"data": {
|
171 |
-
"application/vnd.jupyter.widget-view+json": {
|
172 |
-
"model_id": "9aed4d88c18e4e28a1efbbed94331228",
|
173 |
-
"version_major": 2,
|
174 |
-
"version_minor": 0
|
175 |
-
},
|
176 |
-
"text/plain": [
|
177 |
-
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/125 [00:00<?, ?B/s]"
|
178 |
-
]
|
179 |
-
},
|
180 |
-
"metadata": {},
|
181 |
-
"output_type": "display_data"
|
182 |
-
}
|
183 |
-
],
|
184 |
-
"source": [
|
185 |
-
"#from transformers import BertTokenizer\n",
|
186 |
-
"#tokenizer = BertTokenizer.from_pretrained('malay-huggingface/bert-tiny-bahasa-cased')\n",
|
187 |
-
"\n",
|
188 |
-
"from transformers import AutoTokenizer\n",
|
189 |
-
"tokenizer = AutoTokenizer.from_pretrained('mesolitica/bert-base-standard-bahasa-cased')"
|
190 |
-
]
|
191 |
-
},
|
192 |
-
{
|
193 |
-
"cell_type": "code",
|
194 |
-
"execution_count": null,
|
195 |
-
"metadata": {
|
196 |
-
"id": "Ks3XobW0emiu"
|
197 |
-
},
|
198 |
-
"outputs": [],
|
199 |
-
"source": [
|
200 |
-
"import numpy as np\n",
|
201 |
-
"from sklearn.model_selection import train_test_split\n",
|
202 |
-
"from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score\n",
|
203 |
-
"import torch\n",
|
204 |
-
"from transformers import TrainingArguments, Trainer\n",
|
205 |
-
"from transformers import BertTokenizer, BertForSequenceClassification"
|
206 |
-
]
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"cell_type": "code",
|
210 |
-
"execution_count": null,
|
211 |
-
"metadata": {
|
212 |
-
"id": "0ZZx6mUdemiv"
|
213 |
-
},
|
214 |
-
"outputs": [],
|
215 |
-
"source": [
|
216 |
-
"def process_data(row):\n",
|
217 |
-
"\n",
|
218 |
-
" text = row['Text']\n",
|
219 |
-
" text = str(text)\n",
|
220 |
-
" text = ' '.join(text.split())\n",
|
221 |
-
"\n",
|
222 |
-
" encodings = tokenizer(text, padding=\"max_length\", truncation=True, max_length=128)\n",
|
223 |
-
"\n",
|
224 |
-
" label = 0\n",
|
225 |
-
" if row['target'] == 'Cyberbully':\n",
|
226 |
-
" label += 1\n",
|
227 |
-
"\n",
|
228 |
-
" encodings['label'] = label\n",
|
229 |
-
" encodings['Text'] = text\n",
|
230 |
-
"\n",
|
231 |
-
" return encodings"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"cell_type": "code",
|
236 |
-
"execution_count": null,
|
237 |
-
"metadata": {
|
238 |
-
"id": "MaFmqSc-emiv",
|
239 |
-
"outputId": "03eb6491-b646-45dd-ef3d-318c81313430"
|
240 |
-
},
|
241 |
-
"outputs": [
|
242 |
-
{
|
243 |
-
"name": "stdout",
|
244 |
-
"output_type": "stream",
|
245 |
-
"text": [
|
246 |
-
"{'input_ids': [2, 2039, 3058, 9857, 1606, 1164, 2161, 8062, 1219, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'label': 0, 'Text': 'Saya suka masakan beliau dan cara penyampaiannya'}\n"
|
247 |
-
]
|
248 |
-
}
|
249 |
-
],
|
250 |
-
"source": [
|
251 |
-
"print(process_data({\n",
|
252 |
-
" 'Text': 'Saya suka masakan beliau dan cara penyampaiannya',\n",
|
253 |
-
" 'target': 'NonCyberbully'\n",
|
254 |
-
"}))"
|
255 |
-
]
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"cell_type": "code",
|
259 |
-
"execution_count": null,
|
260 |
-
"metadata": {
|
261 |
-
"id": "Lel-2lqKemiw"
|
262 |
-
},
|
263 |
-
"outputs": [],
|
264 |
-
"source": [
|
265 |
-
"processed_data = []\n",
|
266 |
-
"\n",
|
267 |
-
"for i in range(len(df[:1383])):\n",
|
268 |
-
" processed_data.append(process_data(df.iloc[i]))"
|
269 |
-
]
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"cell_type": "markdown",
|
273 |
-
"metadata": {
|
274 |
-
"id": "x_DGsKzHemiw"
|
275 |
-
},
|
276 |
-
"source": [
|
277 |
-
"## Generate the dataset"
|
278 |
-
]
|
279 |
-
},
|
280 |
-
{
|
281 |
-
"cell_type": "code",
|
282 |
-
"execution_count": null,
|
283 |
-
"metadata": {
|
284 |
-
"id": "oc_NsbnXemiw"
|
285 |
-
},
|
286 |
-
"outputs": [],
|
287 |
-
"source": [
|
288 |
-
"from sklearn.model_selection import train_test_split\n",
|
289 |
-
"\n",
|
290 |
-
"new_df = pd.DataFrame(processed_data)\n",
|
291 |
-
"\n",
|
292 |
-
"train_df, valid_df = train_test_split(\n",
|
293 |
-
" new_df,\n",
|
294 |
-
" test_size=0.2,\n",
|
295 |
-
" random_state=2022\n",
|
296 |
-
")"
|
297 |
-
]
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"cell_type": "code",
|
301 |
-
"execution_count": null,
|
302 |
-
"metadata": {
|
303 |
-
"id": "4qSci5CRemix"
|
304 |
-
},
|
305 |
-
"outputs": [],
|
306 |
-
"source": [
|
307 |
-
"import pyarrow as pa\n",
|
308 |
-
"from datasets import Dataset\n",
|
309 |
-
"\n",
|
310 |
-
"train_hg = Dataset(pa.Table.from_pandas(train_df))\n",
|
311 |
-
"valid_hg = Dataset(pa.Table.from_pandas(valid_df))"
|
312 |
-
]
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"cell_type": "code",
|
316 |
-
"execution_count": null,
|
317 |
-
"metadata": {
|
318 |
-
"id": "xDgnim7iemix",
|
319 |
-
"outputId": "59858161-59a4-4731-fbfc-7e30a1246eed"
|
320 |
-
},
|
321 |
-
"outputs": [
|
322 |
-
{
|
323 |
-
"data": {
|
324 |
-
"text/plain": [
|
325 |
-
"Dataset({\n",
|
326 |
-
" features: ['Text', 'attention_mask', 'input_ids', 'label', 'token_type_ids', '__index_level_0__'],\n",
|
327 |
-
" num_rows: 277\n",
|
328 |
-
"})"
|
329 |
-
]
|
330 |
-
},
|
331 |
-
"execution_count": 12,
|
332 |
-
"metadata": {},
|
333 |
-
"output_type": "execute_result"
|
334 |
-
}
|
335 |
-
],
|
336 |
-
"source": [
|
337 |
-
"valid_hg"
|
338 |
-
]
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"cell_type": "markdown",
|
342 |
-
"metadata": {
|
343 |
-
"id": "8Uqq0cKKemiy"
|
344 |
-
},
|
345 |
-
"source": [
|
346 |
-
"## Create a model"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
{
|
350 |
-
"cell_type": "code",
|
351 |
-
"execution_count": null,
|
352 |
-
"metadata": {
|
353 |
-
"id": "QQkDAXmRemiz",
|
354 |
-
"outputId": "e00faff0-c7d7-456d-dab2-73d9839c0274",
|
355 |
-
"colab": {
|
356 |
-
"referenced_widgets": [
|
357 |
-
"b9faad28a43547029c8b13ab639f8d05",
|
358 |
-
"6175ea4206304020823d86e0bbc23298"
|
359 |
-
]
|
360 |
-
}
|
361 |
-
},
|
362 |
-
"outputs": [
|
363 |
-
{
|
364 |
-
"data": {
|
365 |
-
"application/vnd.jupyter.widget-view+json": {
|
366 |
-
"model_id": "b9faad28a43547029c8b13ab639f8d05",
|
367 |
-
"version_major": 2,
|
368 |
-
"version_minor": 0
|
369 |
-
},
|
370 |
-
"text/plain": [
|
371 |
-
"Downloading (…)lve/main/config.json: 0%| | 0.00/697 [00:00<?, ?B/s]"
|
372 |
-
]
|
373 |
-
},
|
374 |
-
"metadata": {},
|
375 |
-
"output_type": "display_data"
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"data": {
|
379 |
-
"application/vnd.jupyter.widget-view+json": {
|
380 |
-
"model_id": "6175ea4206304020823d86e0bbc23298",
|
381 |
-
"version_major": 2,
|
382 |
-
"version_minor": 0
|
383 |
-
},
|
384 |
-
"text/plain": [
|
385 |
-
"Downloading pytorch_model.bin: 0%| | 0.00/443M [00:00<?, ?B/s]"
|
386 |
-
]
|
387 |
-
},
|
388 |
-
"metadata": {},
|
389 |
-
"output_type": "display_data"
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"name": "stderr",
|
393 |
-
"output_type": "stream",
|
394 |
-
"text": [
|
395 |
-
"Some weights of the model checkpoint at mesolitica/bert-base-standard-bahasa-cased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias']\n",
|
396 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
397 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
398 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at mesolitica/bert-base-standard-bahasa-cased and are newly initialized: ['classifier.bias', 'bert.pooler.dense.bias', 'classifier.weight', 'bert.pooler.dense.weight']\n",
|
399 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
400 |
-
]
|
401 |
-
}
|
402 |
-
],
|
403 |
-
"source": [
|
404 |
-
"#from transformers import BertForSequenceClassification\n",
|
405 |
-
"\n",
|
406 |
-
"#model = BertForSequenceClassification.from_pretrained(\n",
|
407 |
-
"# 'malay-huggingface/bert-tiny-bahasa-cased',\n",
|
408 |
-
"# num_labels=2\n",
|
409 |
-
"#)\n",
|
410 |
-
"\n",
|
411 |
-
"\n",
|
412 |
-
"from transformers import AutoModelForSequenceClassification\n",
|
413 |
-
"\n",
|
414 |
-
"model = AutoModelForSequenceClassification.from_pretrained(\n",
|
415 |
-
" 'mesolitica/bert-base-standard-bahasa-cased',\n",
|
416 |
-
" num_labels=2\n",
|
417 |
-
")"
|
418 |
-
]
|
419 |
-
},
|
420 |
-
{
|
421 |
-
"cell_type": "code",
|
422 |
-
"execution_count": null,
|
423 |
-
"metadata": {
|
424 |
-
"id": "ifvtnwBMemi1"
|
425 |
-
},
|
426 |
-
"outputs": [],
|
427 |
-
"source": [
|
428 |
-
"def compute_metrics(p):\n",
|
429 |
-
" print(type(p))\n",
|
430 |
-
" pred, labels = p\n",
|
431 |
-
" pred = np.argmax(pred, axis=1)\n",
|
432 |
-
"\n",
|
433 |
-
" accuracy = accuracy_score(y_true=labels, y_pred=pred)\n",
|
434 |
-
" recall = recall_score(y_true=labels, y_pred=pred)\n",
|
435 |
-
" precision = precision_score(y_true=labels, y_pred=pred)\n",
|
436 |
-
" f1 = f1_score(y_true=labels, y_pred=pred)\n",
|
437 |
-
"\n",
|
438 |
-
" return {\"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}\n",
|
439 |
-
""
|
440 |
-
]
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"cell_type": "code",
|
444 |
-
"execution_count": null,
|
445 |
-
"metadata": {
|
446 |
-
"id": "50Xy9P7Remi2"
|
447 |
-
},
|
448 |
-
"outputs": [],
|
449 |
-
"source": [
|
450 |
-
"from transformers import TrainingArguments, Trainer\n",
|
451 |
-
"\n",
|
452 |
-
"training_args = TrainingArguments(output_dir=\"./result\", evaluation_strategy=\"epoch\")\n",
|
453 |
-
"\n",
|
454 |
-
"trainer = Trainer(\n",
|
455 |
-
" model=model,\n",
|
456 |
-
" args=training_args,\n",
|
457 |
-
" train_dataset=train_hg,\n",
|
458 |
-
" eval_dataset=valid_hg,\n",
|
459 |
-
" tokenizer=tokenizer,\n",
|
460 |
-
" compute_metrics=compute_metrics\n",
|
461 |
-
")"
|
462 |
-
]
|
463 |
-
},
|
464 |
-
{
|
465 |
-
"cell_type": "markdown",
|
466 |
-
"metadata": {
|
467 |
-
"id": "myIstfgJemi3"
|
468 |
-
},
|
469 |
-
"source": [
|
470 |
-
"## Train and Evaluate the model"
|
471 |
-
]
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"cell_type": "code",
|
475 |
-
"execution_count": null,
|
476 |
-
"metadata": {
|
477 |
-
"id": "-UtAkNHUemi4",
|
478 |
-
"outputId": "5af038f3-a77c-41eb-e48d-747a8e776e38"
|
479 |
-
},
|
480 |
-
"outputs": [
|
481 |
-
{
|
482 |
-
"name": "stderr",
|
483 |
-
"output_type": "stream",
|
484 |
-
"text": [
|
485 |
-
"C:\\Users\\user\\anaconda3\\lib\\site-packages\\transformers\\optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
486 |
-
" warnings.warn(\n",
|
487 |
-
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
|
488 |
-
]
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"data": {
|
492 |
-
"text/html": [
|
493 |
-
"\n",
|
494 |
-
" <div>\n",
|
495 |
-
" \n",
|
496 |
-
" <progress value='417' max='417' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
497 |
-
" [417/417 56:36, Epoch 3/3]\n",
|
498 |
-
" </div>\n",
|
499 |
-
" <table border=\"1\" class=\"dataframe\">\n",
|
500 |
-
" <thead>\n",
|
501 |
-
" <tr style=\"text-align: left;\">\n",
|
502 |
-
" <th>Epoch</th>\n",
|
503 |
-
" <th>Training Loss</th>\n",
|
504 |
-
" <th>Validation Loss</th>\n",
|
505 |
-
" <th>Accuracy</th>\n",
|
506 |
-
" <th>Precision</th>\n",
|
507 |
-
" <th>Recall</th>\n",
|
508 |
-
" <th>F1</th>\n",
|
509 |
-
" </tr>\n",
|
510 |
-
" </thead>\n",
|
511 |
-
" <tbody>\n",
|
512 |
-
" <tr>\n",
|
513 |
-
" <td>1</td>\n",
|
514 |
-
" <td>No log</td>\n",
|
515 |
-
" <td>0.493876</td>\n",
|
516 |
-
" <td>0.779783</td>\n",
|
517 |
-
" <td>0.657343</td>\n",
|
518 |
-
" <td>0.886792</td>\n",
|
519 |
-
" <td>0.755020</td>\n",
|
520 |
-
" </tr>\n",
|
521 |
-
" <tr>\n",
|
522 |
-
" <td>2</td>\n",
|
523 |
-
" <td>No log</td>\n",
|
524 |
-
" <td>0.542367</td>\n",
|
525 |
-
" <td>0.870036</td>\n",
|
526 |
-
" <td>0.850000</td>\n",
|
527 |
-
" <td>0.801887</td>\n",
|
528 |
-
" <td>0.825243</td>\n",
|
529 |
-
" </tr>\n",
|
530 |
-
" <tr>\n",
|
531 |
-
" <td>3</td>\n",
|
532 |
-
" <td>No log</td>\n",
|
533 |
-
" <td>0.725669</td>\n",
|
534 |
-
" <td>0.848375</td>\n",
|
535 |
-
" <td>0.820000</td>\n",
|
536 |
-
" <td>0.773585</td>\n",
|
537 |
-
" <td>0.796117</td>\n",
|
538 |
-
" </tr>\n",
|
539 |
-
" </tbody>\n",
|
540 |
-
"</table><p>"
|
541 |
-
],
|
542 |
-
"text/plain": [
|
543 |
-
"<IPython.core.display.HTML object>"
|
544 |
-
]
|
545 |
-
},
|
546 |
-
"metadata": {},
|
547 |
-
"output_type": "display_data"
|
548 |
-
},
|
549 |
-
{
|
550 |
-
"name": "stdout",
|
551 |
-
"output_type": "stream",
|
552 |
-
"text": [
|
553 |
-
"<class 'transformers.trainer_utils.EvalPrediction'>\n",
|
554 |
-
"<class 'transformers.trainer_utils.EvalPrediction'>\n",
|
555 |
-
"<class 'transformers.trainer_utils.EvalPrediction'>\n"
|
556 |
-
]
|
557 |
-
},
|
558 |
-
{
|
559 |
-
"data": {
|
560 |
-
"text/plain": [
|
561 |
-
"TrainOutput(global_step=417, training_loss=0.2771467213436282, metrics={'train_runtime': 3405.0836, 'train_samples_per_second': 0.974, 'train_steps_per_second': 0.122, 'total_flos': 218053287129600.0, 'train_loss': 0.2771467213436282, 'epoch': 3.0})"
|
562 |
-
]
|
563 |
-
},
|
564 |
-
"execution_count": 16,
|
565 |
-
"metadata": {},
|
566 |
-
"output_type": "execute_result"
|
567 |
-
}
|
568 |
-
],
|
569 |
-
"source": [
|
570 |
-
"trainer.train()"
|
571 |
-
]
|
572 |
-
},
|
573 |
-
{
|
574 |
-
"cell_type": "code",
|
575 |
-
"execution_count": null,
|
576 |
-
"metadata": {
|
577 |
-
"id": "fZYGhNyremi4",
|
578 |
-
"outputId": "5119c379-d7e9-48f7-9137-d788f99a3731"
|
579 |
-
},
|
580 |
-
"outputs": [
|
581 |
-
{
|
582 |
-
"data": {
|
583 |
-
"text/html": [
|
584 |
-
"\n",
|
585 |
-
" <div>\n",
|
586 |
-
" \n",
|
587 |
-
" <progress value='35' max='35' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
588 |
-
" [35/35 00:43]\n",
|
589 |
-
" </div>\n",
|
590 |
-
" "
|
591 |
-
],
|
592 |
-
"text/plain": [
|
593 |
-
"<IPython.core.display.HTML object>"
|
594 |
-
]
|
595 |
-
},
|
596 |
-
"metadata": {},
|
597 |
-
"output_type": "display_data"
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"name": "stdout",
|
601 |
-
"output_type": "stream",
|
602 |
-
"text": [
|
603 |
-
"<class 'transformers.trainer_utils.EvalPrediction'>\n"
|
604 |
-
]
|
605 |
-
},
|
606 |
-
{
|
607 |
-
"data": {
|
608 |
-
"text/plain": [
|
609 |
-
"{'eval_loss': 0.7256694436073303,\n",
|
610 |
-
" 'eval_accuracy': 0.8483754512635379,\n",
|
611 |
-
" 'eval_precision': 0.82,\n",
|
612 |
-
" 'eval_recall': 0.7735849056603774,\n",
|
613 |
-
" 'eval_f1': 0.796116504854369,\n",
|
614 |
-
" 'eval_runtime': 44.9419,\n",
|
615 |
-
" 'eval_samples_per_second': 6.164,\n",
|
616 |
-
" 'eval_steps_per_second': 0.779,\n",
|
617 |
-
" 'epoch': 3.0}"
|
618 |
-
]
|
619 |
-
},
|
620 |
-
"execution_count": 17,
|
621 |
-
"metadata": {},
|
622 |
-
"output_type": "execute_result"
|
623 |
-
}
|
624 |
-
],
|
625 |
-
"source": [
|
626 |
-
"trainer.evaluate()"
|
627 |
-
]
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"cell_type": "markdown",
|
631 |
-
"metadata": {
|
632 |
-
"id": "tlw24Ccdemi5"
|
633 |
-
},
|
634 |
-
"source": [
|
635 |
-
"## Save the model"
|
636 |
-
]
|
637 |
-
},
|
638 |
-
{
|
639 |
-
"cell_type": "code",
|
640 |
-
"execution_count": null,
|
641 |
-
"metadata": {
|
642 |
-
"id": "69n4eVBHemi6"
|
643 |
-
},
|
644 |
-
"outputs": [],
|
645 |
-
"source": [
|
646 |
-
"model.save_pretrained('./model/')"
|
647 |
-
]
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"cell_type": "code",
|
651 |
-
"execution_count": null,
|
652 |
-
"metadata": {
|
653 |
-
"id": "gC9qDoERemi6",
|
654 |
-
"outputId": "a5514df7-d322-48b9-df27-c799dca6d884"
|
655 |
-
},
|
656 |
-
"outputs": [
|
657 |
-
{
|
658 |
-
"name": "stdout",
|
659 |
-
"output_type": "stream",
|
660 |
-
"text": [
|
661 |
-
"Looking in indexes: https://download.pytorch.org/whl/cu117\n",
|
662 |
-
"Requirement already satisfied: torch in c:\\users\\user\\anaconda3\\lib\\site-packages (2.0.1+cu118)\n",
|
663 |
-
"Requirement already satisfied: torchvision in c:\\users\\user\\anaconda3\\lib\\site-packages (0.15.2+cu117)\n",
|
664 |
-
"Requirement already satisfied: torchaudio in c:\\users\\user\\anaconda3\\lib\\site-packages (2.0.2+cu117)\n",
|
665 |
-
"Requirement already satisfied: sympy in c:\\users\\user\\anaconda3\\lib\\site-packages (from torch) (1.11.1)\n",
|
666 |
-
"Requirement already satisfied: jinja2 in c:\\users\\user\\anaconda3\\lib\\site-packages (from torch) (3.1.2)\n",
|
667 |
-
"Requirement already satisfied: filelock in c:\\users\\user\\anaconda3\\lib\\site-packages (from torch) (3.9.0)\n",
|
668 |
-
"Requirement already satisfied: networkx in c:\\users\\user\\anaconda3\\lib\\site-packages (from torch) (2.5.1)\n",
|
669 |
-
"Requirement already satisfied: typing-extensions in c:\\users\\user\\anaconda3\\lib\\site-packages (from torch) (4.4.0)\n",
|
670 |
-
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (9.4.0)\n",
|
671 |
-
"Requirement already satisfied: numpy in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (1.23.5)\n",
|
672 |
-
"Requirement already satisfied: requests in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (2.28.1)\n",
|
673 |
-
"Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from jinja2->torch) (2.1.1)\n",
|
674 |
-
"Requirement already satisfied: decorator<5,>=4.3 in c:\\users\\user\\anaconda3\\lib\\site-packages (from networkx->torch) (4.4.2)\n",
|
675 |
-
"Requirement already satisfied: charset-normalizer<3,>=2 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (2.0.4)\n",
|
676 |
-
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (1.26.14)\n",
|
677 |
-
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (2.10)\n",
|
678 |
-
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (2022.12.7)\n",
|
679 |
-
"Requirement already satisfied: mpmath>=0.19 in c:\\users\\user\\anaconda3\\lib\\site-packages (from sympy->torch) (1.2.1)\n"
|
680 |
-
]
|
681 |
-
}
|
682 |
-
],
|
683 |
-
"source": [
|
684 |
-
"!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117"
|
685 |
-
]
|
686 |
-
},
|
687 |
-
{
|
688 |
-
"cell_type": "code",
|
689 |
-
"execution_count": null,
|
690 |
-
"metadata": {
|
691 |
-
"id": "3NBugUKAemi7"
|
692 |
-
},
|
693 |
-
"outputs": [],
|
694 |
-
"source": []
|
695 |
-
},
|
696 |
-
{
|
697 |
-
"cell_type": "code",
|
698 |
-
"execution_count": null,
|
699 |
-
"metadata": {
|
700 |
-
"id": "-W3_K_Kjemi7"
|
701 |
-
},
|
702 |
-
"outputs": [],
|
703 |
-
"source": []
|
704 |
-
},
|
705 |
-
{
|
706 |
-
"cell_type": "markdown",
|
707 |
-
"metadata": {
|
708 |
-
"id": "yMiT54Ddemi7"
|
709 |
-
},
|
710 |
-
"source": [
|
711 |
-
"## Load the model"
|
712 |
-
]
|
713 |
-
},
|
714 |
-
{
|
715 |
-
"cell_type": "code",
|
716 |
-
"execution_count": null,
|
717 |
-
"metadata": {
|
718 |
-
"id": "mEFnUaM3emi7"
|
719 |
-
},
|
720 |
-
"outputs": [],
|
721 |
-
"source": [
|
722 |
-
"import torch\n",
|
723 |
-
"from transformers import AutoModelForSequenceClassification\n",
|
724 |
-
"\n",
|
725 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
726 |
-
"\n",
|
727 |
-
"new_model = AutoModelForSequenceClassification.from_pretrained('./model/').to(device)"
|
728 |
-
]
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"cell_type": "code",
|
732 |
-
"execution_count": null,
|
733 |
-
"metadata": {
|
734 |
-
"id": "zkDeulcTemi8",
|
735 |
-
"outputId": "2500b324-398b-471b-9c08-48fa79ea9de3"
|
736 |
-
},
|
737 |
-
"outputs": [
|
738 |
-
{
|
739 |
-
"name": "stderr",
|
740 |
-
"output_type": "stream",
|
741 |
-
"text": [
|
742 |
-
"ERROR: torch-1.0.1-cp36-cp36m-win_amd64.whl is not a supported wheel on this platform.\n",
|
743 |
-
"\n",
|
744 |
-
"[notice] A new release of pip is available: 23.0.1 -> 23.1.2\n",
|
745 |
-
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
|
746 |
-
]
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"name": "stdout",
|
750 |
-
"output_type": "stream",
|
751 |
-
"text": [
|
752 |
-
"Requirement already satisfied: torchvision in c:\\users\\user\\anaconda3\\lib\\site-packages (0.14.0)\n",
|
753 |
-
"Requirement already satisfied: typing-extensions in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (4.1.1)\n",
|
754 |
-
"Requirement already satisfied: requests in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (2.27.1)\n",
|
755 |
-
"Requirement already satisfied: torch==1.13.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (1.13.0)\n",
|
756 |
-
"Requirement already satisfied: numpy in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (1.24.2)\n",
|
757 |
-
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from torchvision) (9.0.1)\n",
|
758 |
-
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (3.3)\n",
|
759 |
-
"Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (2.0.4)\n",
|
760 |
-
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (2022.9.24)\n",
|
761 |
-
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\users\\user\\anaconda3\\lib\\site-packages (from requests->torchvision) (1.26.9)\n"
|
762 |
-
]
|
763 |
-
},
|
764 |
-
{
|
765 |
-
"name": "stderr",
|
766 |
-
"output_type": "stream",
|
767 |
-
"text": [
|
768 |
-
"\n",
|
769 |
-
"[notice] A new release of pip is available: 23.0.1 -> 23.1.2\n",
|
770 |
-
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
|
771 |
-
]
|
772 |
-
}
|
773 |
-
],
|
774 |
-
"source": [
|
775 |
-
"!pip install https://download.pytorch.org/whl/cpu/torch-1.0.1-cp36-cp36m-win_amd64.whl\n",
|
776 |
-
"!pip install torchvision"
|
777 |
-
]
|
778 |
-
},
|
779 |
-
{
|
780 |
-
"cell_type": "code",
|
781 |
-
"execution_count": null,
|
782 |
-
"metadata": {
|
783 |
-
"id": "WtI-WDBhemi8"
|
784 |
-
},
|
785 |
-
"outputs": [],
|
786 |
-
"source": [
|
787 |
-
"from transformers import AutoTokenizer\n",
|
788 |
-
"\n",
|
789 |
-
"new_tokenizer = AutoTokenizer.from_pretrained('mesolitica/bert-base-standard-bahasa-cased')"
|
790 |
-
]
|
791 |
-
},
|
792 |
-
{
|
793 |
-
"cell_type": "markdown",
|
794 |
-
"metadata": {
|
795 |
-
"id": "S2X_uPYJemi9"
|
796 |
-
},
|
797 |
-
"source": [
|
798 |
-
"## Get predictions"
|
799 |
-
]
|
800 |
-
},
|
801 |
-
{
|
802 |
-
"cell_type": "code",
|
803 |
-
"execution_count": null,
|
804 |
-
"metadata": {
|
805 |
-
"id": "qXKQEiWxemi9"
|
806 |
-
},
|
807 |
-
"outputs": [],
|
808 |
-
"source": [
|
809 |
-
"import torch\n",
|
810 |
-
"import numpy as np\n",
|
811 |
-
"\n",
|
812 |
-
"def get_prediction(text):\n",
|
813 |
-
" encoding = new_tokenizer(text, return_tensors=\"pt\", padding=\"max_length\", truncation=True, max_length=128)\n",
|
814 |
-
" encoding = {k: v.to(trainer.model.device) for k,v in encoding.items()}\n",
|
815 |
-
"\n",
|
816 |
-
" outputs = new_model(**encoding)\n",
|
817 |
-
"\n",
|
818 |
-
" logits = outputs.logits\n",
|
819 |
-
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
820 |
-
" sigmoid = torch.nn.Sigmoid()\n",
|
821 |
-
" print(sigmoid)\n",
|
822 |
-
" probs = sigmoid(logits.squeeze().cpu())\n",
|
823 |
-
" probs = probs.detach().numpy()\n",
|
824 |
-
" label = np.argmax(probs, axis=-1)\n",
|
825 |
-
"\n",
|
826 |
-
" if label == 1:\n",
|
827 |
-
" return {\n",
|
828 |
-
" 'Target': 'Cyberbully',\n",
|
829 |
-
" 'probability': probs[1]\n",
|
830 |
-
" }\n",
|
831 |
-
" else:\n",
|
832 |
-
" return {\n",
|
833 |
-
" 'Target': 'Not Cyberbully',\n",
|
834 |
-
" 'probability': probs[0]\n",
|
835 |
-
" }"
|
836 |
-
]
|
837 |
-
},
|
838 |
-
{
|
839 |
-
"cell_type": "code",
|
840 |
-
"execution_count": null,
|
841 |
-
"metadata": {
|
842 |
-
"id": "NcYq4vmVemi9"
|
843 |
-
},
|
844 |
-
"outputs": [],
|
845 |
-
"source": [
|
846 |
-
"# dir()"
|
847 |
-
]
|
848 |
-
},
|
849 |
-
{
|
850 |
-
"cell_type": "code",
|
851 |
-
"execution_count": null,
|
852 |
-
"metadata": {
|
853 |
-
"id": "CS_2FfAeemi_",
|
854 |
-
"outputId": "106776a5-fced-4329-aa1f-5970a4a71386"
|
855 |
-
},
|
856 |
-
"outputs": [
|
857 |
-
{
|
858 |
-
"name": "stdout",
|
859 |
-
"output_type": "stream",
|
860 |
-
"text": [
|
861 |
-
"Sigmoid()\n"
|
862 |
-
]
|
863 |
-
},
|
864 |
-
{
|
865 |
-
"data": {
|
866 |
-
"text/plain": [
|
867 |
-
"{'Target': 'Cyberbully', 'probability': 0.9651532}"
|
868 |
-
]
|
869 |
-
},
|
870 |
-
"execution_count": 24,
|
871 |
-
"metadata": {},
|
872 |
-
"output_type": "execute_result"
|
873 |
-
}
|
874 |
-
],
|
875 |
-
"source": [
|
876 |
-
"get_prediction('Aku malas kerja dengan orang macam ni menyusahkan orang je')"
|
877 |
-
]
|
878 |
-
}
|
879 |
-
],
|
880 |
-
"metadata": {
|
881 |
-
"kernelspec": {
|
882 |
-
"display_name": "Python 3 (ipykernel)",
|
883 |
-
"language": "python",
|
884 |
-
"name": "python3"
|
885 |
-
},
|
886 |
-
"language_info": {
|
887 |
-
"codemirror_mode": {
|
888 |
-
"name": "ipython",
|
889 |
-
"version": 3
|
890 |
-
},
|
891 |
-
"file_extension": ".py",
|
892 |
-
"mimetype": "text/x-python",
|
893 |
-
"name": "python",
|
894 |
-
"nbconvert_exporter": "python",
|
895 |
-
"pygments_lexer": "ipython3",
|
896 |
-
"version": "3.10.9"
|
897 |
-
},
|
898 |
-
"vscode": {
|
899 |
-
"interpreter": {
|
900 |
-
"hash": "173fe52379437b78f95c8980b8ee9f2930fd7b56889ab31a72735475ddc10c81"
|
901 |
-
}
|
902 |
-
},
|
903 |
-
"colab": {
|
904 |
-
"provenance": []
|
905 |
-
}
|
906 |
-
},
|
907 |
-
"nbformat": 4,
|
908 |
-
"nbformat_minor": 0
|
909 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|