Dc26 commited on
Commit
7f35d4e
·
1 Parent(s): bcbcb15

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -11
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.8532
20
- - Accuracy: 0.9046
21
 
22
  ## Model description
23
 
@@ -36,23 +36,20 @@ More information needed
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
- - learning_rate: 2e-05
40
- - train_batch_size: 32
41
  - eval_batch_size: 32
42
- - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
- - num_epochs: 5
46
 
47
  ### Training results
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
- | 0.0148 | 1.0 | 620 | 0.7765 | 0.8999 |
52
- | 0.0147 | 2.0 | 1240 | 0.7833 | 0.9020 |
53
- | 0.0161 | 3.0 | 1860 | 0.8049 | 0.9038 |
54
- | 0.0119 | 4.0 | 2480 | 0.8536 | 0.9026 |
55
- | 0.0046 | 5.0 | 3100 | 0.8532 | 0.9046 |
56
 
57
 
58
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.3124
20
+ - Accuracy: 0.9120
21
 
22
  ## Model description
23
 
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
+ - learning_rate: 4.403244198762251e-05
40
+ - train_batch_size: 8
41
  - eval_batch_size: 32
42
+ - seed: 34
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
+ - num_epochs: 2
46
 
47
  ### Training results
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
+ | 0.2952 | 1.0 | 2479 | 0.2984 | 0.9088 |
52
+ | 0.232 | 2.0 | 4958 | 0.3124 | 0.9120 |
 
 
 
53
 
54
 
55
  ### Framework versions