Add new CrossEncoder model
Browse files- README.md +313 -0
- config.json +36 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- cross-encoder
|
5 |
+
- generated_from_trainer
|
6 |
+
- dataset_size:5
|
7 |
+
- loss:MultipleNegativesRankingLoss
|
8 |
+
base_model: cross-encoder/ms-marco-MiniLM-L12-v2
|
9 |
+
pipeline_tag: text-ranking
|
10 |
+
library_name: sentence-transformers
|
11 |
+
---
|
12 |
+
|
13 |
+
# CrossEncoder based on cross-encoder/ms-marco-MiniLM-L12-v2
|
14 |
+
|
15 |
+
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** Cross Encoder
|
21 |
+
- **Base model:** [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) <!-- at revision a34da8fab3ad458d48778dea3276ce729857efaf -->
|
22 |
+
- **Maximum Sequence Length:** 512 tokens
|
23 |
+
- **Number of Output Labels:** 1 label
|
24 |
+
<!-- - **Training Dataset:** Unknown -->
|
25 |
+
<!-- - **Language:** Unknown -->
|
26 |
+
<!-- - **License:** Unknown -->
|
27 |
+
|
28 |
+
### Model Sources
|
29 |
+
|
30 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
31 |
+
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
32 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
33 |
+
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
### Direct Usage (Sentence Transformers)
|
38 |
+
|
39 |
+
First install the Sentence Transformers library:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
pip install -U sentence-transformers
|
43 |
+
```
|
44 |
+
|
45 |
+
Then you can load this model and run inference.
|
46 |
+
```python
|
47 |
+
from sentence_transformers import CrossEncoder
|
48 |
+
|
49 |
+
# Download from the 🤗 Hub
|
50 |
+
model = CrossEncoder("Davidsamuel101/ft-ms-marco-MiniLM-L12-v2-claims-reranker")
|
51 |
+
# Get scores for pairs of texts
|
52 |
+
pairs = [
|
53 |
+
["It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.", 'The report, issued on 18 February 2011, cleared the researchers and "did not find any evidence that NOAA inappropriately manipulated data or failed to adhere to appropriate peer review procedures".'],
|
54 |
+
["It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.", 'Ongoing experiments are conducted by more than 4,000 scientists from many nations.'],
|
55 |
+
["It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.", 'Novell did not seem to proceed to a full court case after losing their case there.'],
|
56 |
+
["It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.", 'In the face of determined opposition from the National Park Service and conservation groups, the dam was never built.'],
|
57 |
+
["It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.", 'At Caltech he developed the first instrument able to measure carbon dioxide in atmospheric samples with consistently reliable accuracy.'],
|
58 |
+
]
|
59 |
+
scores = model.predict(pairs)
|
60 |
+
print(scores.shape)
|
61 |
+
# (5,)
|
62 |
+
|
63 |
+
# Or rank different texts based on similarity to a single text
|
64 |
+
ranks = model.rank(
|
65 |
+
"It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.",
|
66 |
+
[
|
67 |
+
'The report, issued on 18 February 2011, cleared the researchers and "did not find any evidence that NOAA inappropriately manipulated data or failed to adhere to appropriate peer review procedures".',
|
68 |
+
'Ongoing experiments are conducted by more than 4,000 scientists from many nations.',
|
69 |
+
'Novell did not seem to proceed to a full court case after losing their case there.',
|
70 |
+
'In the face of determined opposition from the National Park Service and conservation groups, the dam was never built.',
|
71 |
+
'At Caltech he developed the first instrument able to measure carbon dioxide in atmospheric samples with consistently reliable accuracy.',
|
72 |
+
]
|
73 |
+
)
|
74 |
+
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
75 |
+
```
|
76 |
+
|
77 |
+
<!--
|
78 |
+
### Direct Usage (Transformers)
|
79 |
+
|
80 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
+
|
82 |
+
</details>
|
83 |
+
-->
|
84 |
+
|
85 |
+
<!--
|
86 |
+
### Downstream Usage (Sentence Transformers)
|
87 |
+
|
88 |
+
You can finetune this model on your own dataset.
|
89 |
+
|
90 |
+
<details><summary>Click to expand</summary>
|
91 |
+
|
92 |
+
</details>
|
93 |
+
-->
|
94 |
+
|
95 |
+
<!--
|
96 |
+
### Out-of-Scope Use
|
97 |
+
|
98 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
+
-->
|
100 |
+
|
101 |
+
<!--
|
102 |
+
## Bias, Risks and Limitations
|
103 |
+
|
104 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Recommendations
|
109 |
+
|
110 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
## Training Details
|
114 |
+
|
115 |
+
### Training Dataset
|
116 |
+
|
117 |
+
#### Unnamed Dataset
|
118 |
+
|
119 |
+
* Size: 5 training samples
|
120 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
121 |
+
* Approximate statistics based on the first 5 samples:
|
122 |
+
| | text1 | text2 | label |
|
123 |
+
|:--------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------|
|
124 |
+
| type | string | string | int |
|
125 |
+
| details | <ul><li>min: 186 characters</li><li>mean: 186.0 characters</li><li>max: 186 characters</li></ul> | <ul><li>min: 82 characters</li><li>mean: 122.6 characters</li><li>max: 197 characters</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
|
126 |
+
* Samples:
|
127 |
+
| text1 | text2 | label |
|
128 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
129 |
+
| <code>It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.</code> | <code>The report, issued on 18 February 2011, cleared the researchers and "did not find any evidence that NOAA inappropriately manipulated data or failed to adhere to appropriate peer review procedures".</code> | <code>1</code> |
|
130 |
+
| <code>It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.</code> | <code>Ongoing experiments are conducted by more than 4,000 scientists from many nations.</code> | <code>0</code> |
|
131 |
+
| <code>It found the scientists' rigour and honesty are not in doubt, and their behaviour did not prejudice the IPCC's conclusions, though they did fail to display the proper degree of openness.</code> | <code>Novell did not seem to proceed to a full court case after losing their case there.</code> | <code>0</code> |
|
132 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#multiplenegativesrankingloss) with these parameters:
|
133 |
+
```json
|
134 |
+
{
|
135 |
+
"scale": 10.0,
|
136 |
+
"num_negatives": 4,
|
137 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid"
|
138 |
+
}
|
139 |
+
```
|
140 |
+
|
141 |
+
### Training Hyperparameters
|
142 |
+
#### Non-Default Hyperparameters
|
143 |
+
|
144 |
+
- `eval_strategy`: steps
|
145 |
+
- `per_device_train_batch_size`: 16
|
146 |
+
- `learning_rate`: 1e-05
|
147 |
+
- `num_train_epochs`: 10
|
148 |
+
- `bf16`: True
|
149 |
+
- `load_best_model_at_end`: True
|
150 |
+
|
151 |
+
#### All Hyperparameters
|
152 |
+
<details><summary>Click to expand</summary>
|
153 |
+
|
154 |
+
- `overwrite_output_dir`: False
|
155 |
+
- `do_predict`: False
|
156 |
+
- `eval_strategy`: steps
|
157 |
+
- `prediction_loss_only`: True
|
158 |
+
- `per_device_train_batch_size`: 16
|
159 |
+
- `per_device_eval_batch_size`: 8
|
160 |
+
- `per_gpu_train_batch_size`: None
|
161 |
+
- `per_gpu_eval_batch_size`: None
|
162 |
+
- `gradient_accumulation_steps`: 1
|
163 |
+
- `eval_accumulation_steps`: None
|
164 |
+
- `torch_empty_cache_steps`: None
|
165 |
+
- `learning_rate`: 1e-05
|
166 |
+
- `weight_decay`: 0.0
|
167 |
+
- `adam_beta1`: 0.9
|
168 |
+
- `adam_beta2`: 0.999
|
169 |
+
- `adam_epsilon`: 1e-08
|
170 |
+
- `max_grad_norm`: 1.0
|
171 |
+
- `num_train_epochs`: 10
|
172 |
+
- `max_steps`: -1
|
173 |
+
- `lr_scheduler_type`: linear
|
174 |
+
- `lr_scheduler_kwargs`: {}
|
175 |
+
- `warmup_ratio`: 0.0
|
176 |
+
- `warmup_steps`: 0
|
177 |
+
- `log_level`: passive
|
178 |
+
- `log_level_replica`: warning
|
179 |
+
- `log_on_each_node`: True
|
180 |
+
- `logging_nan_inf_filter`: True
|
181 |
+
- `save_safetensors`: True
|
182 |
+
- `save_on_each_node`: False
|
183 |
+
- `save_only_model`: False
|
184 |
+
- `restore_callback_states_from_checkpoint`: False
|
185 |
+
- `no_cuda`: False
|
186 |
+
- `use_cpu`: False
|
187 |
+
- `use_mps_device`: False
|
188 |
+
- `seed`: 42
|
189 |
+
- `data_seed`: None
|
190 |
+
- `jit_mode_eval`: False
|
191 |
+
- `use_ipex`: False
|
192 |
+
- `bf16`: True
|
193 |
+
- `fp16`: False
|
194 |
+
- `fp16_opt_level`: O1
|
195 |
+
- `half_precision_backend`: auto
|
196 |
+
- `bf16_full_eval`: False
|
197 |
+
- `fp16_full_eval`: False
|
198 |
+
- `tf32`: None
|
199 |
+
- `local_rank`: 0
|
200 |
+
- `ddp_backend`: None
|
201 |
+
- `tpu_num_cores`: None
|
202 |
+
- `tpu_metrics_debug`: False
|
203 |
+
- `debug`: []
|
204 |
+
- `dataloader_drop_last`: False
|
205 |
+
- `dataloader_num_workers`: 0
|
206 |
+
- `dataloader_prefetch_factor`: None
|
207 |
+
- `past_index`: -1
|
208 |
+
- `disable_tqdm`: False
|
209 |
+
- `remove_unused_columns`: True
|
210 |
+
- `label_names`: None
|
211 |
+
- `load_best_model_at_end`: True
|
212 |
+
- `ignore_data_skip`: False
|
213 |
+
- `fsdp`: []
|
214 |
+
- `fsdp_min_num_params`: 0
|
215 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
216 |
+
- `tp_size`: 0
|
217 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
218 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
219 |
+
- `deepspeed`: None
|
220 |
+
- `label_smoothing_factor`: 0.0
|
221 |
+
- `optim`: adamw_torch
|
222 |
+
- `optim_args`: None
|
223 |
+
- `adafactor`: False
|
224 |
+
- `group_by_length`: False
|
225 |
+
- `length_column_name`: length
|
226 |
+
- `ddp_find_unused_parameters`: None
|
227 |
+
- `ddp_bucket_cap_mb`: None
|
228 |
+
- `ddp_broadcast_buffers`: False
|
229 |
+
- `dataloader_pin_memory`: True
|
230 |
+
- `dataloader_persistent_workers`: False
|
231 |
+
- `skip_memory_metrics`: True
|
232 |
+
- `use_legacy_prediction_loop`: False
|
233 |
+
- `push_to_hub`: False
|
234 |
+
- `resume_from_checkpoint`: None
|
235 |
+
- `hub_model_id`: None
|
236 |
+
- `hub_strategy`: every_save
|
237 |
+
- `hub_private_repo`: None
|
238 |
+
- `hub_always_push`: False
|
239 |
+
- `gradient_checkpointing`: False
|
240 |
+
- `gradient_checkpointing_kwargs`: None
|
241 |
+
- `include_inputs_for_metrics`: False
|
242 |
+
- `include_for_metrics`: []
|
243 |
+
- `eval_do_concat_batches`: True
|
244 |
+
- `fp16_backend`: auto
|
245 |
+
- `push_to_hub_model_id`: None
|
246 |
+
- `push_to_hub_organization`: None
|
247 |
+
- `mp_parameters`:
|
248 |
+
- `auto_find_batch_size`: False
|
249 |
+
- `full_determinism`: False
|
250 |
+
- `torchdynamo`: None
|
251 |
+
- `ray_scope`: last
|
252 |
+
- `ddp_timeout`: 1800
|
253 |
+
- `torch_compile`: False
|
254 |
+
- `torch_compile_backend`: None
|
255 |
+
- `torch_compile_mode`: None
|
256 |
+
- `include_tokens_per_second`: False
|
257 |
+
- `include_num_input_tokens_seen`: False
|
258 |
+
- `neftune_noise_alpha`: None
|
259 |
+
- `optim_target_modules`: None
|
260 |
+
- `batch_eval_metrics`: False
|
261 |
+
- `eval_on_start`: False
|
262 |
+
- `use_liger_kernel`: False
|
263 |
+
- `eval_use_gather_object`: False
|
264 |
+
- `average_tokens_across_devices`: False
|
265 |
+
- `prompts`: None
|
266 |
+
- `batch_sampler`: batch_sampler
|
267 |
+
- `multi_dataset_batch_sampler`: proportional
|
268 |
+
|
269 |
+
</details>
|
270 |
+
|
271 |
+
### Framework Versions
|
272 |
+
- Python: 3.13.2
|
273 |
+
- Sentence Transformers: 4.1.0
|
274 |
+
- Transformers: 4.51.3
|
275 |
+
- PyTorch: 2.7.0+cu128
|
276 |
+
- Accelerate: 1.6.0
|
277 |
+
- Datasets: 3.6.0
|
278 |
+
- Tokenizers: 0.21.1
|
279 |
+
|
280 |
+
## Citation
|
281 |
+
|
282 |
+
### BibTeX
|
283 |
+
|
284 |
+
#### Sentence Transformers
|
285 |
+
```bibtex
|
286 |
+
@inproceedings{reimers-2019-sentence-bert,
|
287 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
288 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
289 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
290 |
+
month = "11",
|
291 |
+
year = "2019",
|
292 |
+
publisher = "Association for Computational Linguistics",
|
293 |
+
url = "https://arxiv.org/abs/1908.10084",
|
294 |
+
}
|
295 |
+
```
|
296 |
+
|
297 |
+
<!--
|
298 |
+
## Glossary
|
299 |
+
|
300 |
+
*Clearly define terms in order to be accessible across audiences.*
|
301 |
+
-->
|
302 |
+
|
303 |
+
<!--
|
304 |
+
## Model Card Authors
|
305 |
+
|
306 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
307 |
+
-->
|
308 |
+
|
309 |
+
<!--
|
310 |
+
## Model Card Contact
|
311 |
+
|
312 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
313 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity",
|
27 |
+
"sentence_transformers": {
|
28 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid",
|
29 |
+
"version": "4.1.0"
|
30 |
+
},
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.51.3",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 30522
|
36 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53ea43205a18064214a0d2fc95d1b8c72cf070ec3980bbec152cb772ceef9e9a
|
3 |
+
size 133464836
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|