--- base_model: - cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - karakuri-ai/karakuri-lm-32b-thinking-2501-exp - Saxo/Linkbricks-Horizon-AI-Japanese-Base-32B - FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview - TeamDelta/ABEJA-Qwen2.5-32B-base-jp-v0.1 - deepseek-ai/DeepSeek-R1-Distill-Qwen-32B - NovaSky-AI/Sky-T1-32B-Flash library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en - ja --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/CxkLHJy9597WodmOOlWwc.jpeg) ## 概要 このモデルは[nitky/RoguePlanet-DeepSeek-R1-Qwen-32B](https://huggingface.co/nitky/RoguePlanet-DeepSeek-R1-Qwen-32B)にインスパイアを受け、作成されたモデルです。 タグが出力されることは確認しています。 日本語モデルとしてもよい性能を出せることも確認しています。 ## How To Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DataPilot/SKYCAVE-R1-32B-v0.1" tokenizer_name = "" if tokenizer_name == "": tokenizer_name = model_name model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) prompt = "メタデータを解析し、自己進化をするAIであるnurture intelligenceが実現した未来の日常生活の姿を教えてください。" messages = [ {"role": "system", "content": "あなたは優秀な日本語アシスタントであり長考モデルです。問題解決をするための思考をした上で回答を行ってください。"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=4096 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## 謝辞 このモデルの作成者皆様と、計算資源を貸していただいたVOLTMINDに感謝します。 モデル作成にアドバイスをしていただいたnitkyさんにも感謝申し上げます。 ## mergekit config ```yaml merge_method: slerp base_model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp - model: Saxo/Linkbricks-Horizon-AI-Japanese-Base-32B parameters: t: 0.35 dtype: bfloat16 name: SKYCAVE_element_QwQ_jp --- merge_method: slerp base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese models: - model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - model: SKYCAVE_element_QwQ_jp parameters: t: 0.4 dtype: bfloat16 name: SKYCAVE_element_QR_jp --- merge_method: slerp base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese models: - model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - model: FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview parameters: t: 0.5 dtype: bfloat16 name: SKYCAVE_element_R1_jp_01 --- merge_method: slerp base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese models: - model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - model: TeamDelta/ABEJA-Qwen2.5-32B-base-jp-v0.1 parameters: t: 0.5 dtype: bfloat16 name: SKYCAVE_element_R1_jp_02 --- merge_method: slerp base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese models: - model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B parameters: t: 0.6 dtype: bfloat16 name: SKYCAVE_element_R1_jp_03 --- merge_method: slerp base_model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp models: - model: karakuri-ai/karakuri-lm-32b-thinking-2501-exp - model: NovaSky-AI/Sky-T1-32B-Flash parameters: t: 0.4 dtype: bfloat16 name: SKYCAVE_element_Sky_jp --- merge_method: model_stock base_model: cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese models: - model: SKYCAVE_element_QR_jp - model: SKYCAVE_element_R1_jp_01 - model: SKYCAVE_element_R1_jp_02 - model: SKYCAVE_element_R1_jp_03 - model: SKYCAVE_element_Sky_jp dtype: bfloat16 name: SKYCAVE-R1-32B-v0.1 ```