DariaaaS commited on
Commit
4e9816d
1 Parent(s): 5692f67

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:100
13
+ - loss:TripletLoss
14
+ widget:
15
+ - source_sentence: How many athletes from region 151 have won a medal?
16
+ sentences:
17
+ - athletes refer to person_id; region 151 refers to region_id = 151; won a medal
18
+ refers to medal_id <> 4;
19
+ - Rio de Janeiro refers to city_name = 'Rio de Janeiro';
20
+ - the highest number of participants refers to MAX(COUNT(person_id)); the lowest
21
+ number of participants refers to MIN(COUNT(person_id)); Which summer Olympic refers
22
+ to games_name where season = 'Summer';
23
+ - source_sentence: What is the id of Rio de Janeiro?
24
+ sentences:
25
+ - year refers to games_year;
26
+ - athletes refer to person_id; region 151 refers to region_id = 151; won a medal
27
+ refers to medal_id <> 4;
28
+ - Rio de Janeiro refers to city_name = 'Rio de Janeiro';
29
+ - source_sentence: Please list the Asian populations of all the residential areas
30
+ with the bad alias "URB San Joaquin".
31
+ sentences:
32
+ - '"URB San Joaquin" is the bad_alias'
33
+ - name of congressman implies full name which refers to first_name, last_name; Guanica
34
+ is the city;
35
+ - '"URB San Joaquin" is the bad_alias'
36
+ - source_sentence: State the male population for all zip code which were under the
37
+ Berlin, NH CBSA.
38
+ sentences:
39
+ - '"Berlin, NH" is the CBSA_name'
40
+ - '"Barre, VT" is the CBSA_name'
41
+ - representative's full names refer to first_name, last_name; area which has highest
42
+ population in 2020 refers to MAX(population_2020);
43
+ - source_sentence: Which state has the most bad aliases?
44
+ sentences:
45
+ - '"York" is the city; ''ME'' is the state; type refers to CBSA_type'
46
+ - the most bad aliases refer to MAX(COUNT(bad_alias));
47
+ - precise location refers to latitude, longitude
48
+ ---
49
+
50
+ # SentenceTransformer based on intfloat/multilingual-e5-base
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the train and test datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
59
+ - **Maximum Sequence Length:** 512 tokens
60
+ - **Output Dimensionality:** 768 tokens
61
+ - **Similarity Function:** Cosine Similarity
62
+ - **Training Datasets:**
63
+ - train
64
+ - test
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
71
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
72
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
73
+
74
+ ### Full Model Architecture
75
+
76
+ ```
77
+ SentenceTransformer(
78
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
79
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
80
+ (2): Normalize()
81
+ )
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Direct Usage (Sentence Transformers)
87
+
88
+ First install the Sentence Transformers library:
89
+
90
+ ```bash
91
+ pip install -U sentence-transformers
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+ ```python
96
+ from sentence_transformers import SentenceTransformer
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SentenceTransformer("DariaaaS/e5-args-1")
100
+ # Run inference
101
+ sentences = [
102
+ 'Which state has the most bad aliases?',
103
+ 'the most bad aliases refer to MAX(COUNT(bad_alias));',
104
+ 'precise location refers to latitude, longitude',
105
+ ]
106
+ embeddings = model.encode(sentences)
107
+ print(embeddings.shape)
108
+ # [3, 768]
109
+
110
+ # Get the similarity scores for the embeddings
111
+ similarities = model.similarity(embeddings, embeddings)
112
+ print(similarities.shape)
113
+ # [3, 3]
114
+ ```
115
+
116
+ <!--
117
+ ### Direct Usage (Transformers)
118
+
119
+ <details><summary>Click to see the direct usage in Transformers</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Downstream Usage (Sentence Transformers)
126
+
127
+ You can finetune this model on your own dataset.
128
+
129
+ <details><summary>Click to expand</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Datasets
155
+
156
+ #### train
157
+
158
+ * Dataset: train
159
+ * Size: 80 training samples
160
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
161
+ * Approximate statistics based on the first 1000 samples:
162
+ | | query | positive | negative |
163
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
164
+ | type | string | string | string |
165
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.75 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.12 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 28.56 tokens</li><li>max: 54 tokens</li></ul> |
166
+ * Samples:
167
+ | query | positive | negative |
168
+ |:-----------------------------------------------------|:------------------------------------------|:--------------------------------------------------------------------------------------------------------|
169
+ | <code>How many zip codes are under Barre, VT?</code> | <code>"Barre, VT" is the CBSA_name</code> | <code>coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'</code> |
170
+ | <code>How many zip codes are under Barre, VT?</code> | <code>"Barre, VT" is the CBSA_name</code> | <code>name of county refers to county</code> |
171
+ | <code>How many zip codes are under Barre, VT?</code> | <code>"Barre, VT" is the CBSA_name</code> | <code>median age over 40 refers to median_age > 40</code> |
172
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
173
+ ```json
174
+ {
175
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
176
+ "triplet_margin": 5
177
+ }
178
+ ```
179
+
180
+ #### test
181
+
182
+ * Dataset: test
183
+ * Size: 20 training samples
184
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | query | positive | negative |
187
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 11 tokens</li><li>mean: 12.5 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 22.5 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 23.45 tokens</li><li>max: 56 tokens</li></ul> |
190
+ * Samples:
191
+ | query | positive | negative |
192
+ |:---------------------------------------------------------|:-------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
193
+ | <code>Where is competitor Estelle Nze Minko from?</code> | <code>Where competitor is from refers to region_name;</code> | <code>NOC code refers to noc; the heaviest refers to MAX(weight);</code> |
194
+ | <code>Where is competitor Estelle Nze Minko from?</code> | <code>Where competitor is from refers to region_name;</code> | <code>host city refers to city_name; the 1968 Winter Olympic Games refer to games_name = '1968 Winter';</code> |
195
+ | <code>Where is competitor Estelle Nze Minko from?</code> | <code>Where competitor is from refers to region_name;</code> | <code>the gold medal refers to medal_name = 'Gold';</code> |
196
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
197
+ ```json
198
+ {
199
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
200
+ "triplet_margin": 5
201
+ }
202
+ ```
203
+
204
+ ### Training Hyperparameters
205
+ #### Non-Default Hyperparameters
206
+
207
+ - `per_device_train_batch_size`: 16
208
+ - `per_device_eval_batch_size`: 16
209
+ - `learning_rate`: 2e-05
210
+ - `num_train_epochs`: 4
211
+ - `warmup_ratio`: 0.1
212
+ - `fp16`: True
213
+
214
+ #### All Hyperparameters
215
+ <details><summary>Click to expand</summary>
216
+
217
+ - `overwrite_output_dir`: False
218
+ - `do_predict`: False
219
+ - `eval_strategy`: no
220
+ - `prediction_loss_only`: True
221
+ - `per_device_train_batch_size`: 16
222
+ - `per_device_eval_batch_size`: 16
223
+ - `per_gpu_train_batch_size`: None
224
+ - `per_gpu_eval_batch_size`: None
225
+ - `gradient_accumulation_steps`: 1
226
+ - `eval_accumulation_steps`: None
227
+ - `learning_rate`: 2e-05
228
+ - `weight_decay`: 0.0
229
+ - `adam_beta1`: 0.9
230
+ - `adam_beta2`: 0.999
231
+ - `adam_epsilon`: 1e-08
232
+ - `max_grad_norm`: 1.0
233
+ - `num_train_epochs`: 4
234
+ - `max_steps`: -1
235
+ - `lr_scheduler_type`: linear
236
+ - `lr_scheduler_kwargs`: {}
237
+ - `warmup_ratio`: 0.1
238
+ - `warmup_steps`: 0
239
+ - `log_level`: passive
240
+ - `log_level_replica`: warning
241
+ - `log_on_each_node`: True
242
+ - `logging_nan_inf_filter`: True
243
+ - `save_safetensors`: True
244
+ - `save_on_each_node`: False
245
+ - `save_only_model`: False
246
+ - `restore_callback_states_from_checkpoint`: False
247
+ - `no_cuda`: False
248
+ - `use_cpu`: False
249
+ - `use_mps_device`: False
250
+ - `seed`: 42
251
+ - `data_seed`: None
252
+ - `jit_mode_eval`: False
253
+ - `use_ipex`: False
254
+ - `bf16`: False
255
+ - `fp16`: True
256
+ - `fp16_opt_level`: O1
257
+ - `half_precision_backend`: auto
258
+ - `bf16_full_eval`: False
259
+ - `fp16_full_eval`: False
260
+ - `tf32`: None
261
+ - `local_rank`: 0
262
+ - `ddp_backend`: None
263
+ - `tpu_num_cores`: None
264
+ - `tpu_metrics_debug`: False
265
+ - `debug`: []
266
+ - `dataloader_drop_last`: False
267
+ - `dataloader_num_workers`: 0
268
+ - `dataloader_prefetch_factor`: None
269
+ - `past_index`: -1
270
+ - `disable_tqdm`: False
271
+ - `remove_unused_columns`: True
272
+ - `label_names`: None
273
+ - `load_best_model_at_end`: False
274
+ - `ignore_data_skip`: False
275
+ - `fsdp`: []
276
+ - `fsdp_min_num_params`: 0
277
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
278
+ - `fsdp_transformer_layer_cls_to_wrap`: None
279
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
280
+ - `deepspeed`: None
281
+ - `label_smoothing_factor`: 0.0
282
+ - `optim`: adamw_torch
283
+ - `optim_args`: None
284
+ - `adafactor`: False
285
+ - `group_by_length`: False
286
+ - `length_column_name`: length
287
+ - `ddp_find_unused_parameters`: None
288
+ - `ddp_bucket_cap_mb`: None
289
+ - `ddp_broadcast_buffers`: False
290
+ - `dataloader_pin_memory`: True
291
+ - `dataloader_persistent_workers`: False
292
+ - `skip_memory_metrics`: True
293
+ - `use_legacy_prediction_loop`: False
294
+ - `push_to_hub`: False
295
+ - `resume_from_checkpoint`: None
296
+ - `hub_model_id`: None
297
+ - `hub_strategy`: every_save
298
+ - `hub_private_repo`: False
299
+ - `hub_always_push`: False
300
+ - `gradient_checkpointing`: False
301
+ - `gradient_checkpointing_kwargs`: None
302
+ - `include_inputs_for_metrics`: False
303
+ - `eval_do_concat_batches`: True
304
+ - `fp16_backend`: auto
305
+ - `push_to_hub_model_id`: None
306
+ - `push_to_hub_organization`: None
307
+ - `mp_parameters`:
308
+ - `auto_find_batch_size`: False
309
+ - `full_determinism`: False
310
+ - `torchdynamo`: None
311
+ - `ray_scope`: last
312
+ - `ddp_timeout`: 1800
313
+ - `torch_compile`: False
314
+ - `torch_compile_backend`: None
315
+ - `torch_compile_mode`: None
316
+ - `dispatch_batches`: None
317
+ - `split_batches`: None
318
+ - `include_tokens_per_second`: False
319
+ - `include_num_input_tokens_seen`: False
320
+ - `neftune_noise_alpha`: None
321
+ - `optim_target_modules`: None
322
+ - `batch_eval_metrics`: False
323
+ - `eval_on_start`: False
324
+ - `batch_sampler`: batch_sampler
325
+ - `multi_dataset_batch_sampler`: proportional
326
+
327
+ </details>
328
+
329
+ ### Framework Versions
330
+ - Python: 3.10.12
331
+ - Sentence Transformers: 3.0.1
332
+ - Transformers: 4.42.4
333
+ - PyTorch: 2.4.0+cu121
334
+ - Accelerate: 0.32.1
335
+ - Datasets: 2.21.0
336
+ - Tokenizers: 0.19.1
337
+
338
+ ## Citation
339
+
340
+ ### BibTeX
341
+
342
+ #### Sentence Transformers
343
+ ```bibtex
344
+ @inproceedings{reimers-2019-sentence-bert,
345
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
+ author = "Reimers, Nils and Gurevych, Iryna",
347
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
+ month = "11",
349
+ year = "2019",
350
+ publisher = "Association for Computational Linguistics",
351
+ url = "https://arxiv.org/abs/1908.10084",
352
+ }
353
+ ```
354
+
355
+ #### TripletLoss
356
+ ```bibtex
357
+ @misc{hermans2017defense,
358
+ title={In Defense of the Triplet Loss for Person Re-Identification},
359
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
360
+ year={2017},
361
+ eprint={1703.07737},
362
+ archivePrefix={arXiv},
363
+ primaryClass={cs.CV}
364
+ }
365
+ ```
366
+
367
+ <!--
368
+ ## Glossary
369
+
370
+ *Clearly define terms in order to be accessible across audiences.*
371
+ -->
372
+
373
+ <!--
374
+ ## Model Card Authors
375
+
376
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
377
+ -->
378
+
379
+ <!--
380
+ ## Model Card Contact
381
+
382
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
383
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84bd41e32f90d6aa7f9eb7a6fd0e8c36fed16716e9e61278ac9e454f73705074
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }