--- license: apache-2.0 datasets: - C-MTEB/TNews-classification metrics: - accuracy base_model: - openai-community/gpt2 pipeline_tag: text-classification library_name: transformers --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description This is a fine-tuned version of the GPT-2 model for sentiment analysis on tweets. The model has been trained on the mteb/tweet_sentiment_extraction dataset to classify tweets into three sentiment categories: Positive, Neutral, and Negative. It uses the Hugging Face Transformers library and achieves an evaluation accuracy of 76%. - **Developed by:** Pradeep Vepada - **Contact:** pradeep.vepada24@gmail.com - **Shared by [optional]:** [More Information Needed] - **Model type:** - Architecture: GPT-2 Fine-Tuned Task: Sentiment Analysis - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Usage: This model is designed for sentiment analysis of tweets or other short social media text. Given an input text, it predicts the sentiment as Positive, Neutral, or Negative. ### Performance: Accuracy: 76% Evaluation Metric: Accuracy Validation Split: 10% of the dataset. [More Information Needed] ### Training Configuration: Tokenizer: GPT-2 Tokenizer (with EOS token as pad token) Optimizer: AdamW Learning Rate: 1e-5 Epochs: 3 Batch Size: 1 Hardware Used: A100 ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations Biases: The dataset may contain biased or harmful text, potentially influencing predictions. Limitations: Optimized for English tweets; performance may degrade on other text types or languages. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure Nvidia A100 #### Example Code: from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("charlie1898/gpt2_finetuned_twitter_sentiment_analysis") model = AutoModelForSequenceClassification.from_pretrained("charlie1898/gpt2_finetuned_twitter_sentiment_analysis") # Example input text = "I love using Hugging Face models!" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item() print(f"Predicted sentiment class: {predicted_class}") # Limitations - ** Bias **: The dataset may contain biased or harmful text, potentially influencing predictions. - ** Domain Limitations **: Optimized for English tweets; performance may degrade on other text types or languages. # Ethical Considerations This model should be used responsibly. Be aware of biases in the training data and avoid deploying the model in sensitive or high-stakes applications without further validation. # Acknowledgments - Hugging Face Transformers library - mteb/tweet_sentiment_extraction dataset #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]