--- library_name: transformers base_model: Dans-DiscountModels/mistral-7b-v0.3-ChatML tags: - axolotl - generated_from_trainer datasets: - Dans-DiscountModels/pretokenization-test-2 model-index: - name: 7b-m-dans-personalityengine-v1.2.1-rc-5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: Dans-DiscountModels/mistral-7b-v0.3-ChatML model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: # wandb configuration wandb_project: 7b-m-dans-personalityengine wandb_watch: wandb_run_id: V1.2.1-4-1 # V{Version}-{Run Number}-{Attempt Number} wandb_log_model: # push checkpoints to hub hub_model_id: Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-5 # how to push checkpoints to hub # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy hub_strategy: "every_save" # Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets # Required to be true when used in combination with `push_dataset_to_hub` hf_use_auth_token: true # where to save the finished model to output_dir: ./7b-m-dans-personalityengine # where to save the dataset to dataset_prepared_path: ./7b-m-dans-personalityengine-data save_safetensors: true # dataset settings (local or huggingface repo) datasets: - path: Dans-DiscountModels/pretokenization-test-2 ds_type: parquet type: plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false val_set_size: 0.005 sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true gradient_checkpointing: true # gradient_checkpointing_kwargs: # use_reentrant: false gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: ademamix_8bit optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=10" lr_scheduler: rex learning_rate: 0.00000015 cosine_min_lr_ratio: 0.1 # weight_decay: 0.03 max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: false local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.03 evals_per_epoch: 24 eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 save_total_limit: 1 debug: false deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: ```

# 7b-m-dans-personalityengine-v1.2.1-rc-5 This model is a fine-tuned version of [Dans-DiscountModels/mistral-7b-v0.3-ChatML](https://huggingface.co/Dans-DiscountModels/mistral-7b-v0.3-ChatML) on the Dans-DiscountModels/pretokenization-test-2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=10 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 43 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5957 | 0.0007 | 1 | 1.5418 | | 1.487 | 0.0417 | 61 | 1.4982 | | 1.5851 | 0.0833 | 122 | 1.4720 | | 1.3702 | 0.125 | 183 | 1.4596 | | 1.5285 | 0.1667 | 244 | 1.4519 | | 1.4809 | 0.2083 | 305 | 1.4461 | | 1.3806 | 0.25 | 366 | 1.4414 | | 1.5097 | 0.2917 | 427 | 1.4373 | | 1.497 | 0.3333 | 488 | 1.4338 | | 1.503 | 0.375 | 549 | 1.4306 | | 1.384 | 0.4167 | 610 | 1.4278 | | 1.4191 | 0.4583 | 671 | 1.4252 | | 1.3042 | 0.5 | 732 | 1.4228 | | 1.5669 | 0.5417 | 793 | 1.4206 | | 1.4239 | 0.5833 | 854 | 1.4185 | | 1.4472 | 0.625 | 915 | 1.4165 | | 1.4692 | 0.6667 | 976 | 1.4147 | | 1.4358 | 0.7083 | 1037 | 1.4130 | | 1.4676 | 0.75 | 1098 | 1.4114 | | 1.4657 | 0.7917 | 1159 | 1.4099 | | 1.424 | 0.8333 | 1220 | 1.4085 | | 1.3385 | 0.875 | 1281 | 1.4072 | | 1.4373 | 0.9167 | 1342 | 1.4061 | | 1.4226 | 0.9583 | 1403 | 1.4052 | | 1.4225 | 1.0 | 1464 | 1.4047 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1