DaniilSirota commited on
Commit
c08704a
·
1 Parent(s): c6994d1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.49 +/- 16.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bc31d4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bc31d4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bc31d4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bc31d4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f5bc31d4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5bc31d4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bc3159040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5bc31590d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bc3159160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bc31591f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bc3159280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5bc31d2450>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3000320, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671696470261671000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1n4+lrkcECUhpRSlIwBbJRL3owBdJRHQKRJQ8yN4qx1fZQoaAZoCWgPQwgdOj3vxqlxQJSGlFKUaBVNCAFoFkdApElsBsANonV9lChoBmgJaA9DCIhp39zfHXJAlIaUUpRoFUvfaBZHQKRJivCdjG11fZQoaAZoCWgPQwjqtG6DWsVvQJSGlFKUaBVL4GgWR0CkSc0Pxx1gdX2UKGgGaAloD0MIh8CRQIOacUCUhpRSlGgVS+1oFkdApEnulfqoqHV9lChoBmgJaA9DCHe+nxovpnNAlIaUUpRoFUvSaBZHQKRKC+AVfu11fZQoaAZoCWgPQwgHt7WFZ3puQJSGlFKUaBVNRAFoFkdApEpGYc/+sHV9lChoBmgJaA9DCDbn4JkQ/XFAlIaUUpRoFUvnaBZHQKRKi/UvwmV1fZQoaAZoCWgPQwjLSSh9If5xQJSGlFKUaBVNAAFoFkdApEqx+z+m33V9lChoBmgJaA9DCMsTCDvFBnJAlIaUUpRoFUvQaBZHQKRKzx4ptrN1fZQoaAZoCWgPQwi8Bn3pbRFvQJSGlFKUaBVL0mgWR0CkSu0AtFrmdX2UKGgGaAloD0MIVYhH4mXKcUCUhpRSlGgVS8hoFkdApEss6eXiSHV9lChoBmgJaA9DCFHZsKayu3FAlIaUUpRoFUvuaBZHQKRLUR/3Fkx1fZQoaAZoCWgPQwjEsS5uY1ZxQJSGlFKUaBVL7GgWR0CkS3JiiItUdX2UKGgGaAloD0MIsFQX8PLYc0CUhpRSlGgVS9xoFkdApEuS4OMER3V9lChoBmgJaA9DCJks7j/yLXBAlIaUUpRoFUvbaBZHQKRLsWEbo8p1fZQoaAZoCWgPQwjzBS0kILhyQJSGlFKUaBVLymgWR0CkS+8FhXr/dX2UKGgGaAloD0MIfsaFAyFGbkCUhpRSlGgVS99oFkdApEwO+ZgG8nV9lChoBmgJaA9DCNKMRdNZXnNAlIaUUpRoFUvkaBZHQKRML6tT1kF1fZQoaAZoCWgPQwiHGK95VRFyQJSGlFKUaBVL52gWR0CkTFR9w3o+dX2UKGgGaAloD0MID5nyISgvcECUhpRSlGgVS+loFkdApEyXkHUtqnV9lChoBmgJaA9DCHeeeM4WcnNAlIaUUpRoFUvFaBZHQKRMsmgJ1JV1fZQoaAZoCWgPQwgoucMm8lZwQJSGlFKUaBVL1GgWR0CkTNC++M6zdX2UKGgGaAloD0MI3Zp0W+IvcUCUhpRSlGgVS/toFkdApEz2kadc0XV9lChoBmgJaA9DCHR7SWO0A3BAlIaUUpRoFUvNaBZHQKRNFE7W/ah1fZQoaAZoCWgPQwhDdAgcyVRxQJSGlFKUaBVL0GgWR0CkTVbL+xW1dX2UKGgGaAloD0MIjXqIRvf5cUCUhpRSlGgVTQ8BaBZHQKRNgZ2IO6N1fZQoaAZoCWgPQwj/y7VogdpuQJSGlFKUaBVL72gWR0CkTaVdgOSXdX2UKGgGaAloD0MI0SNGzy2FcECUhpRSlGgVS+VoFkdApE3HH93r2XV9lChoBmgJaA9DCDUJ3pDG2HBAlIaUUpRoFUvRaBZHQKRN5AHmig11fZQoaAZoCWgPQwigUbr0b1VwQJSGlFKUaBVL3mgWR0CkTimtITXbdX2UKGgGaAloD0MI51QyABQtcUCUhpRSlGgVS+doFkdApE5NHpbD/HV9lChoBmgJaA9DCHak+s4vc3JAlIaUUpRoFUv0aBZHQKROcP6sQup1fZQoaAZoCWgPQwjGw3sObLVyQJSGlFKUaBVLx2gWR0CkTovZh8YydX2UKGgGaAloD0MIbATidf0HbkCUhpRSlGgVS+JoFkdApE7NbaAWi3V9lChoBmgJaA9DCPF/R1QoUmxAlIaUUpRoFUvcaBZHQKRO6/6frbB1fZQoaAZoCWgPQwi+afrsQKBxQJSGlFKUaBVL8GgWR0CkTw2oegctdX2UKGgGaAloD0MIRbjJqDK4b0CUhpRSlGgVS+loFkdApE8xQvYe1nV9lChoBmgJaA9DCORp+YGrdG5AlIaUUpRoFUv3aBZHQKRPV0pVjqh1fZQoaAZoCWgPQwj5E5UNK4pwQJSGlFKUaBVL6WgWR0CkT5vBrN4adX2UKGgGaAloD0MIt7QaErfXcECUhpRSlGgVS89oFkdApE+5y2hIv3V9lChoBmgJaA9DCMsQx7q47nJAlIaUUpRoFU0LAWgWR0CkT+EIomXxdX2UKGgGaAloD0MIXi13ZgLMcECUhpRSlGgVS91oFkdApFABnL7oCHV9lChoBmgJaA9DCHr/HydMylJAlIaUUpRoFUusaBZHQKRQO+jdpIt1fZQoaAZoCWgPQwhUqG4ufixwQJSGlFKUaBVL3WgWR0CkUFqIJqqPdX2UKGgGaAloD0MIAihGlsxab0CUhpRSlGgVS+JoFkdApFB58MNMG3V9lChoBmgJaA9DCKFKzR7oqHBAlIaUUpRoFUvlaBZHQKRQm1n/T9d1fZQoaAZoCWgPQwjRV5BmrBRxQJSGlFKUaBVL3GgWR0CkULlFUhmodX2UKGgGaAloD0MI/tXjvpV2ckCUhpRSlGgVS8hoFkdApFD7Pt2LYXV9lChoBmgJaA9DCC2yne+nVm5AlIaUUpRoFUvkaBZHQKRRHXJYDDF1fZQoaAZoCWgPQwgaiGUzR49yQJSGlFKUaBVLwGgWR0CkUTj8k2P1dX2UKGgGaAloD0MI8aDZdW9tb0CUhpRSlGgVS+FoFkdApFFZx3mmtXV9lChoBmgJaA9DCPG4qBbR+XJAlIaUUpRoFU0KAWgWR0CkUaX++/QCdX2UKGgGaAloD0MIMgOV8W+mc0CUhpRSlGgVS79oFkdApFHB5TqB3HV9lChoBmgJaA9DCB123zE8LXBAlIaUUpRoFUvhaBZHQKRR43VCojx1fZQoaAZoCWgPQwisjbET3k5yQJSGlFKUaBVLymgWR0CkUgCs4ku6dX2UKGgGaAloD0MIuaerOxZPdECUhpRSlGgVS9loFkdApFIfOhTOxHV9lChoBmgJaA9DCG2Oc5uwynJAlIaUUpRoFUv0aBZHQKRSaPH1e0J1fZQoaAZoCWgPQwgMycnEbX1wQJSGlFKUaBVNCQFoFkdApFKTqQiiZnV9lChoBmgJaA9DCPhPN1CgBHBAlIaUUpRoFUvpaBZHQKRSttqpLmJ1fZQoaAZoCWgPQwgdke9S6iFxQJSGlFKUaBVL9mgWR0CkUtsT37DVdX2UKGgGaAloD0MIUP9Z82O4cUCUhpRSlGgVS/1oFkdApFMloxpL3HV9lChoBmgJaA9DCNyfi4YMk3FAlIaUUpRoFUv9aBZHQKRTTfb9If91fZQoaAZoCWgPQwhC7iJMkYNyQJSGlFKUaBVNCAFoFkdApFNzmOlwcnV9lChoBmgJaA9DCHIW9rSD8XJAlIaUUpRoFUvOaBZHQKRTkL+glGB1fZQoaAZoCWgPQwhcO1ESUuxzQJSGlFKUaBVLymgWR0CkU6xtHhCMdX2UKGgGaAloD0MImWIOgs4ec0CUhpRSlGgVTRABaBZHQKRT9k92X9l1fZQoaAZoCWgPQwiOyHcpdYRvQJSGlFKUaBVLzWgWR0CkVBLSE12rdX2UKGgGaAloD0MIAhHiypkyc0CUhpRSlGgVS9hoFkdApFQyj59E1HV9lChoBmgJaA9DCBtkkpGzPkxAlIaUUpRoFU3oA2gWR0CkVgq8lHBldX2UKGgGaAloD0MIXpz4aoc6ckCUhpRSlGgVS8ZoFkdApFYlgKF7D3V9lChoBmgJaA9DCH1cGyoGj3JAlIaUUpRoFUu+aBZHQKRWQOwxFiN1fZQoaAZoCWgPQwjp19ZPf9VxQJSGlFKUaBVL7GgWR0CkVobedkJ8dX2UKGgGaAloD0MIkst/SL9uckCUhpRSlGgVTQsBaBZHQKRWriiItUZ1fZQoaAZoCWgPQwhGJuDXSGltQJSGlFKUaBVL4GgWR0CkVs3VkMCtdX2UKGgGaAloD0MIdowrLo7QckCUhpRSlGgVTQIBaBZHQKRW+NEw35x1fZQoaAZoCWgPQwhJn1bRn9ZwQJSGlFKUaBVL3GgWR0CkVz9jgAIZdX2UKGgGaAloD0MI7MIPzqdBcUCUhpRSlGgVS9NoFkdApFde4ZuQ63V9lChoBmgJaA9DCJC/tKiPBHNAlIaUUpRoFUvmaBZHQKRXf1xsEaF1fZQoaAZoCWgPQwiiRbbzfUduQJSGlFKUaBVL1mgWR0CkV5wcghbGdX2UKGgGaAloD0MIEFzlCQR+cECUhpRSlGgVS/9oFkdApFfoaNuLrHV9lChoBmgJaA9DCPILryT5q3FAlIaUUpRoFUvRaBZHQKRYBxUedTZ1fZQoaAZoCWgPQwh15h4SfmlyQJSGlFKUaBVLx2gWR0CkWCOB19v1dX2UKGgGaAloD0MId4L917ntcECUhpRSlGgVS/doFkdApFhIAS39aXV9lChoBmgJaA9DCBk4oKWrGnFAlIaUUpRoFUvAaBZHQKRYYnVoYel1fZQoaAZoCWgPQwioVImydyNwQJSGlFKUaBVNpwFoFkdApFjrDTBqK3V9lChoBmgJaA9DCNrIdVOKTXFAlIaUUpRoFUvCaBZHQKRZBvjOs1d1fZQoaAZoCWgPQwg2XOSebihyQJSGlFKUaBVLxmgWR0CkWSJXhfjTdX2UKGgGaAloD0MINdO9TmpZbkCUhpRSlGgVS+RoFkdApFlEL2HtW3V9lChoBmgJaA9DCEvJchJKFXJAlIaUUpRoFUvraBZHQKRZisbvPTp1fZQoaAZoCWgPQwj8NsR4za1xQJSGlFKUaBVNAAFoFkdApFmvGCI1tXV9lChoBmgJaA9DCGXDmsrid3FAlIaUUpRoFUvzaBZHQKRZ1t0mtyR1fZQoaAZoCWgPQwib54h814BzQJSGlFKUaBVNIwFoFkdApFoGhRIjGHV9lChoBmgJaA9DCDV9dsD1gHNAlIaUUpRoFUu6aBZHQKRaQeU6gdx1fZQoaAZoCWgPQwh24Qfn06lyQJSGlFKUaBVLw2gWR0CkWlv1tfoidX2UKGgGaAloD0MIW3o01RMLcECUhpRSlGgVS9NoFkdApFp6Bun/DXV9lChoBmgJaA9DCOHOhZFeyHNAlIaUUpRoFUvFaBZHQKRalyT6i0x1fZQoaAZoCWgPQwhWEW4yqlVyQJSGlFKUaBVL/mgWR0CkWr2X1J18dX2UKGgGaAloD0MIrYkFviICaUCUhpRSlGgVTaUCaBZHQKRbgBsANod1fZQoaAZoCWgPQwhrgqj7QBlyQJSGlFKUaBVL9GgWR0CkW6atDD0ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19536, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9Vc2Vycy9kcy9vcHQvYW5hY29uZGEzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvVXNlcnMvZHMvb3B0L2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ds_Unit1_LunaLander-v2_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9542a499d037ea6f22551f045f875441f89c49531632209bfee9235b5a384a24
3
+ size 146318
ds_Unit1_LunaLander-v2_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ds_Unit1_LunaLander-v2_model/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bc31d4ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bc31d4d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bc31d4dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bc31d4e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5bc31d4ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5bc31d4f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bc3159040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5bc31590d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bc3159160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bc31591f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bc3159280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5bc31d2450>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 3000320,
46
+ "_total_timesteps": 3000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671696470261671000,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.00010666666666669933,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1n4+lrkcECUhpRSlIwBbJRL3owBdJRHQKRJQ8yN4qx1fZQoaAZoCWgPQwgdOj3vxqlxQJSGlFKUaBVNCAFoFkdApElsBsANonV9lChoBmgJaA9DCIhp39zfHXJAlIaUUpRoFUvfaBZHQKRJivCdjG11fZQoaAZoCWgPQwjqtG6DWsVvQJSGlFKUaBVL4GgWR0CkSc0Pxx1gdX2UKGgGaAloD0MIh8CRQIOacUCUhpRSlGgVS+1oFkdApEnulfqoqHV9lChoBmgJaA9DCHe+nxovpnNAlIaUUpRoFUvSaBZHQKRKC+AVfu11fZQoaAZoCWgPQwgHt7WFZ3puQJSGlFKUaBVNRAFoFkdApEpGYc/+sHV9lChoBmgJaA9DCDbn4JkQ/XFAlIaUUpRoFUvnaBZHQKRKi/UvwmV1fZQoaAZoCWgPQwjLSSh9If5xQJSGlFKUaBVNAAFoFkdApEqx+z+m33V9lChoBmgJaA9DCMsTCDvFBnJAlIaUUpRoFUvQaBZHQKRKzx4ptrN1fZQoaAZoCWgPQwi8Bn3pbRFvQJSGlFKUaBVL0mgWR0CkSu0AtFrmdX2UKGgGaAloD0MIVYhH4mXKcUCUhpRSlGgVS8hoFkdApEss6eXiSHV9lChoBmgJaA9DCFHZsKayu3FAlIaUUpRoFUvuaBZHQKRLUR/3Fkx1fZQoaAZoCWgPQwjEsS5uY1ZxQJSGlFKUaBVL7GgWR0CkS3JiiItUdX2UKGgGaAloD0MIsFQX8PLYc0CUhpRSlGgVS9xoFkdApEuS4OMER3V9lChoBmgJaA9DCJks7j/yLXBAlIaUUpRoFUvbaBZHQKRLsWEbo8p1fZQoaAZoCWgPQwjzBS0kILhyQJSGlFKUaBVLymgWR0CkS+8FhXr/dX2UKGgGaAloD0MIfsaFAyFGbkCUhpRSlGgVS99oFkdApEwO+ZgG8nV9lChoBmgJaA9DCNKMRdNZXnNAlIaUUpRoFUvkaBZHQKRML6tT1kF1fZQoaAZoCWgPQwiHGK95VRFyQJSGlFKUaBVL52gWR0CkTFR9w3o+dX2UKGgGaAloD0MID5nyISgvcECUhpRSlGgVS+loFkdApEyXkHUtqnV9lChoBmgJaA9DCHeeeM4WcnNAlIaUUpRoFUvFaBZHQKRMsmgJ1JV1fZQoaAZoCWgPQwgoucMm8lZwQJSGlFKUaBVL1GgWR0CkTNC++M6zdX2UKGgGaAloD0MI3Zp0W+IvcUCUhpRSlGgVS/toFkdApEz2kadc0XV9lChoBmgJaA9DCHR7SWO0A3BAlIaUUpRoFUvNaBZHQKRNFE7W/ah1fZQoaAZoCWgPQwhDdAgcyVRxQJSGlFKUaBVL0GgWR0CkTVbL+xW1dX2UKGgGaAloD0MIjXqIRvf5cUCUhpRSlGgVTQ8BaBZHQKRNgZ2IO6N1fZQoaAZoCWgPQwj/y7VogdpuQJSGlFKUaBVL72gWR0CkTaVdgOSXdX2UKGgGaAloD0MI0SNGzy2FcECUhpRSlGgVS+VoFkdApE3HH93r2XV9lChoBmgJaA9DCDUJ3pDG2HBAlIaUUpRoFUvRaBZHQKRN5AHmig11fZQoaAZoCWgPQwigUbr0b1VwQJSGlFKUaBVL3mgWR0CkTimtITXbdX2UKGgGaAloD0MI51QyABQtcUCUhpRSlGgVS+doFkdApE5NHpbD/HV9lChoBmgJaA9DCHak+s4vc3JAlIaUUpRoFUv0aBZHQKROcP6sQup1fZQoaAZoCWgPQwjGw3sObLVyQJSGlFKUaBVLx2gWR0CkTovZh8YydX2UKGgGaAloD0MIbATidf0HbkCUhpRSlGgVS+JoFkdApE7NbaAWi3V9lChoBmgJaA9DCPF/R1QoUmxAlIaUUpRoFUvcaBZHQKRO6/6frbB1fZQoaAZoCWgPQwi+afrsQKBxQJSGlFKUaBVL8GgWR0CkTw2oegctdX2UKGgGaAloD0MIRbjJqDK4b0CUhpRSlGgVS+loFkdApE8xQvYe1nV9lChoBmgJaA9DCORp+YGrdG5AlIaUUpRoFUv3aBZHQKRPV0pVjqh1fZQoaAZoCWgPQwj5E5UNK4pwQJSGlFKUaBVL6WgWR0CkT5vBrN4adX2UKGgGaAloD0MIt7QaErfXcECUhpRSlGgVS89oFkdApE+5y2hIv3V9lChoBmgJaA9DCMsQx7q47nJAlIaUUpRoFU0LAWgWR0CkT+EIomXxdX2UKGgGaAloD0MIXi13ZgLMcECUhpRSlGgVS91oFkdApFABnL7oCHV9lChoBmgJaA9DCHr/HydMylJAlIaUUpRoFUusaBZHQKRQO+jdpIt1fZQoaAZoCWgPQwhUqG4ufixwQJSGlFKUaBVL3WgWR0CkUFqIJqqPdX2UKGgGaAloD0MIAihGlsxab0CUhpRSlGgVS+JoFkdApFB58MNMG3V9lChoBmgJaA9DCKFKzR7oqHBAlIaUUpRoFUvlaBZHQKRQm1n/T9d1fZQoaAZoCWgPQwjRV5BmrBRxQJSGlFKUaBVL3GgWR0CkULlFUhmodX2UKGgGaAloD0MI/tXjvpV2ckCUhpRSlGgVS8hoFkdApFD7Pt2LYXV9lChoBmgJaA9DCC2yne+nVm5AlIaUUpRoFUvkaBZHQKRRHXJYDDF1fZQoaAZoCWgPQwgaiGUzR49yQJSGlFKUaBVLwGgWR0CkUTj8k2P1dX2UKGgGaAloD0MI8aDZdW9tb0CUhpRSlGgVS+FoFkdApFFZx3mmtXV9lChoBmgJaA9DCPG4qBbR+XJAlIaUUpRoFU0KAWgWR0CkUaX++/QCdX2UKGgGaAloD0MIMgOV8W+mc0CUhpRSlGgVS79oFkdApFHB5TqB3HV9lChoBmgJaA9DCB123zE8LXBAlIaUUpRoFUvhaBZHQKRR43VCojx1fZQoaAZoCWgPQwisjbET3k5yQJSGlFKUaBVLymgWR0CkUgCs4ku6dX2UKGgGaAloD0MIuaerOxZPdECUhpRSlGgVS9loFkdApFIfOhTOxHV9lChoBmgJaA9DCG2Oc5uwynJAlIaUUpRoFUv0aBZHQKRSaPH1e0J1fZQoaAZoCWgPQwgMycnEbX1wQJSGlFKUaBVNCQFoFkdApFKTqQiiZnV9lChoBmgJaA9DCPhPN1CgBHBAlIaUUpRoFUvpaBZHQKRSttqpLmJ1fZQoaAZoCWgPQwgdke9S6iFxQJSGlFKUaBVL9mgWR0CkUtsT37DVdX2UKGgGaAloD0MIUP9Z82O4cUCUhpRSlGgVS/1oFkdApFMloxpL3HV9lChoBmgJaA9DCNyfi4YMk3FAlIaUUpRoFUv9aBZHQKRTTfb9If91fZQoaAZoCWgPQwhC7iJMkYNyQJSGlFKUaBVNCAFoFkdApFNzmOlwcnV9lChoBmgJaA9DCHIW9rSD8XJAlIaUUpRoFUvOaBZHQKRTkL+glGB1fZQoaAZoCWgPQwhcO1ESUuxzQJSGlFKUaBVLymgWR0CkU6xtHhCMdX2UKGgGaAloD0MImWIOgs4ec0CUhpRSlGgVTRABaBZHQKRT9k92X9l1fZQoaAZoCWgPQwiOyHcpdYRvQJSGlFKUaBVLzWgWR0CkVBLSE12rdX2UKGgGaAloD0MIAhHiypkyc0CUhpRSlGgVS9hoFkdApFQyj59E1HV9lChoBmgJaA9DCBtkkpGzPkxAlIaUUpRoFU3oA2gWR0CkVgq8lHBldX2UKGgGaAloD0MIXpz4aoc6ckCUhpRSlGgVS8ZoFkdApFYlgKF7D3V9lChoBmgJaA9DCH1cGyoGj3JAlIaUUpRoFUu+aBZHQKRWQOwxFiN1fZQoaAZoCWgPQwjp19ZPf9VxQJSGlFKUaBVL7GgWR0CkVobedkJ8dX2UKGgGaAloD0MIkst/SL9uckCUhpRSlGgVTQsBaBZHQKRWriiItUZ1fZQoaAZoCWgPQwhGJuDXSGltQJSGlFKUaBVL4GgWR0CkVs3VkMCtdX2UKGgGaAloD0MIdowrLo7QckCUhpRSlGgVTQIBaBZHQKRW+NEw35x1fZQoaAZoCWgPQwhJn1bRn9ZwQJSGlFKUaBVL3GgWR0CkVz9jgAIZdX2UKGgGaAloD0MI7MIPzqdBcUCUhpRSlGgVS9NoFkdApFde4ZuQ63V9lChoBmgJaA9DCJC/tKiPBHNAlIaUUpRoFUvmaBZHQKRXf1xsEaF1fZQoaAZoCWgPQwiiRbbzfUduQJSGlFKUaBVL1mgWR0CkV5wcghbGdX2UKGgGaAloD0MIEFzlCQR+cECUhpRSlGgVS/9oFkdApFfoaNuLrHV9lChoBmgJaA9DCPILryT5q3FAlIaUUpRoFUvRaBZHQKRYBxUedTZ1fZQoaAZoCWgPQwh15h4SfmlyQJSGlFKUaBVLx2gWR0CkWCOB19v1dX2UKGgGaAloD0MId4L917ntcECUhpRSlGgVS/doFkdApFhIAS39aXV9lChoBmgJaA9DCBk4oKWrGnFAlIaUUpRoFUvAaBZHQKRYYnVoYel1fZQoaAZoCWgPQwioVImydyNwQJSGlFKUaBVNpwFoFkdApFjrDTBqK3V9lChoBmgJaA9DCNrIdVOKTXFAlIaUUpRoFUvCaBZHQKRZBvjOs1d1fZQoaAZoCWgPQwg2XOSebihyQJSGlFKUaBVLxmgWR0CkWSJXhfjTdX2UKGgGaAloD0MINdO9TmpZbkCUhpRSlGgVS+RoFkdApFlEL2HtW3V9lChoBmgJaA9DCEvJchJKFXJAlIaUUpRoFUvraBZHQKRZisbvPTp1fZQoaAZoCWgPQwj8NsR4za1xQJSGlFKUaBVNAAFoFkdApFmvGCI1tXV9lChoBmgJaA9DCGXDmsrid3FAlIaUUpRoFUvzaBZHQKRZ1t0mtyR1fZQoaAZoCWgPQwib54h814BzQJSGlFKUaBVNIwFoFkdApFoGhRIjGHV9lChoBmgJaA9DCDV9dsD1gHNAlIaUUpRoFUu6aBZHQKRaQeU6gdx1fZQoaAZoCWgPQwh24Qfn06lyQJSGlFKUaBVLw2gWR0CkWlv1tfoidX2UKGgGaAloD0MIW3o01RMLcECUhpRSlGgVS9NoFkdApFp6Bun/DXV9lChoBmgJaA9DCOHOhZFeyHNAlIaUUpRoFUvFaBZHQKRalyT6i0x1fZQoaAZoCWgPQwhWEW4yqlVyQJSGlFKUaBVL/mgWR0CkWr2X1J18dX2UKGgGaAloD0MIrYkFviICaUCUhpRSlGgVTaUCaBZHQKRbgBsANod1fZQoaAZoCWgPQwhrgqj7QBlyQJSGlFKUaBVL9GgWR0CkW6atDD0ldWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 19536,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9Vc2Vycy9kcy9vcHQvYW5hY29uZGEzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvVXNlcnMvZHMvb3B0L2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ds_Unit1_LunaLander-v2_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b1324f6905a3359a76e4a62e67f3e2d224cfa05ea71cb790ee25862c6fc19a0
3
+ size 88057
ds_Unit1_LunaLander-v2_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4906866b8df027fc6324363ea986603a16ae81e5739ad3dca2da1ff8616d9bcc
3
+ size 43201
ds_Unit1_LunaLander-v2_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ds_Unit1_LunaLander-v2_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.4918279413759, "std_reward": 16.161615923823067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T11:25:59.238530"}