Commit
·
c08704a
1
Parent(s):
c6994d1
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ds_Unit1_LunaLander-v2_model.zip +3 -0
- ds_Unit1_LunaLander-v2_model/_stable_baselines3_version +1 -0
- ds_Unit1_LunaLander-v2_model/data +91 -0
- ds_Unit1_LunaLander-v2_model/policy.optimizer.pth +3 -0
- ds_Unit1_LunaLander-v2_model/policy.pth +3 -0
- ds_Unit1_LunaLander-v2_model/pytorch_variables.pth +3 -0
- ds_Unit1_LunaLander-v2_model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 275.49 +/- 16.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bc31d4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bc31d4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bc31d4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bc31d4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f5bc31d4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5bc31d4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bc3159040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5bc31590d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bc3159160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bc31591f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bc3159280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5bc31d2450>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3000320, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671696470261671000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1n4+lrkcECUhpRSlIwBbJRL3owBdJRHQKRJQ8yN4qx1fZQoaAZoCWgPQwgdOj3vxqlxQJSGlFKUaBVNCAFoFkdApElsBsANonV9lChoBmgJaA9DCIhp39zfHXJAlIaUUpRoFUvfaBZHQKRJivCdjG11fZQoaAZoCWgPQwjqtG6DWsVvQJSGlFKUaBVL4GgWR0CkSc0Pxx1gdX2UKGgGaAloD0MIh8CRQIOacUCUhpRSlGgVS+1oFkdApEnulfqoqHV9lChoBmgJaA9DCHe+nxovpnNAlIaUUpRoFUvSaBZHQKRKC+AVfu11fZQoaAZoCWgPQwgHt7WFZ3puQJSGlFKUaBVNRAFoFkdApEpGYc/+sHV9lChoBmgJaA9DCDbn4JkQ/XFAlIaUUpRoFUvnaBZHQKRKi/UvwmV1fZQoaAZoCWgPQwjLSSh9If5xQJSGlFKUaBVNAAFoFkdApEqx+z+m33V9lChoBmgJaA9DCMsTCDvFBnJAlIaUUpRoFUvQaBZHQKRKzx4ptrN1fZQoaAZoCWgPQwi8Bn3pbRFvQJSGlFKUaBVL0mgWR0CkSu0AtFrmdX2UKGgGaAloD0MIVYhH4mXKcUCUhpRSlGgVS8hoFkdApEss6eXiSHV9lChoBmgJaA9DCFHZsKayu3FAlIaUUpRoFUvuaBZHQKRLUR/3Fkx1fZQoaAZoCWgPQwjEsS5uY1ZxQJSGlFKUaBVL7GgWR0CkS3JiiItUdX2UKGgGaAloD0MIsFQX8PLYc0CUhpRSlGgVS9xoFkdApEuS4OMER3V9lChoBmgJaA9DCJks7j/yLXBAlIaUUpRoFUvbaBZHQKRLsWEbo8p1fZQoaAZoCWgPQwjzBS0kILhyQJSGlFKUaBVLymgWR0CkS+8FhXr/dX2UKGgGaAloD0MIfsaFAyFGbkCUhpRSlGgVS99oFkdApEwO+ZgG8nV9lChoBmgJaA9DCNKMRdNZXnNAlIaUUpRoFUvkaBZHQKRML6tT1kF1fZQoaAZoCWgPQwiHGK95VRFyQJSGlFKUaBVL52gWR0CkTFR9w3o+dX2UKGgGaAloD0MID5nyISgvcECUhpRSlGgVS+loFkdApEyXkHUtqnV9lChoBmgJaA9DCHeeeM4WcnNAlIaUUpRoFUvFaBZHQKRMsmgJ1JV1fZQoaAZoCWgPQwgoucMm8lZwQJSGlFKUaBVL1GgWR0CkTNC++M6zdX2UKGgGaAloD0MI3Zp0W+IvcUCUhpRSlGgVS/toFkdApEz2kadc0XV9lChoBmgJaA9DCHR7SWO0A3BAlIaUUpRoFUvNaBZHQKRNFE7W/ah1fZQoaAZoCWgPQwhDdAgcyVRxQJSGlFKUaBVL0GgWR0CkTVbL+xW1dX2UKGgGaAloD0MIjXqIRvf5cUCUhpRSlGgVTQ8BaBZHQKRNgZ2IO6N1fZQoaAZoCWgPQwj/y7VogdpuQJSGlFKUaBVL72gWR0CkTaVdgOSXdX2UKGgGaAloD0MI0SNGzy2FcECUhpRSlGgVS+VoFkdApE3HH93r2XV9lChoBmgJaA9DCDUJ3pDG2HBAlIaUUpRoFUvRaBZHQKRN5AHmig11fZQoaAZoCWgPQwigUbr0b1VwQJSGlFKUaBVL3mgWR0CkTimtITXbdX2UKGgGaAloD0MI51QyABQtcUCUhpRSlGgVS+doFkdApE5NHpbD/HV9lChoBmgJaA9DCHak+s4vc3JAlIaUUpRoFUv0aBZHQKROcP6sQup1fZQoaAZoCWgPQwjGw3sObLVyQJSGlFKUaBVLx2gWR0CkTovZh8YydX2UKGgGaAloD0MIbATidf0HbkCUhpRSlGgVS+JoFkdApE7NbaAWi3V9lChoBmgJaA9DCPF/R1QoUmxAlIaUUpRoFUvcaBZHQKRO6/6frbB1fZQoaAZoCWgPQwi+afrsQKBxQJSGlFKUaBVL8GgWR0CkTw2oegctdX2UKGgGaAloD0MIRbjJqDK4b0CUhpRSlGgVS+loFkdApE8xQvYe1nV9lChoBmgJaA9DCORp+YGrdG5AlIaUUpRoFUv3aBZHQKRPV0pVjqh1fZQoaAZoCWgPQwj5E5UNK4pwQJSGlFKUaBVL6WgWR0CkT5vBrN4adX2UKGgGaAloD0MIt7QaErfXcECUhpRSlGgVS89oFkdApE+5y2hIv3V9lChoBmgJaA9DCMsQx7q47nJAlIaUUpRoFU0LAWgWR0CkT+EIomXxdX2UKGgGaAloD0MIXi13ZgLMcECUhpRSlGgVS91oFkdApFABnL7oCHV9lChoBmgJaA9DCHr/HydMylJAlIaUUpRoFUusaBZHQKRQO+jdpIt1fZQoaAZoCWgPQwhUqG4ufixwQJSGlFKUaBVL3WgWR0CkUFqIJqqPdX2UKGgGaAloD0MIAihGlsxab0CUhpRSlGgVS+JoFkdApFB58MNMG3V9lChoBmgJaA9DCKFKzR7oqHBAlIaUUpRoFUvlaBZHQKRQm1n/T9d1fZQoaAZoCWgPQwjRV5BmrBRxQJSGlFKUaBVL3GgWR0CkULlFUhmodX2UKGgGaAloD0MI/tXjvpV2ckCUhpRSlGgVS8hoFkdApFD7Pt2LYXV9lChoBmgJaA9DCC2yne+nVm5AlIaUUpRoFUvkaBZHQKRRHXJYDDF1fZQoaAZoCWgPQwgaiGUzR49yQJSGlFKUaBVLwGgWR0CkUTj8k2P1dX2UKGgGaAloD0MI8aDZdW9tb0CUhpRSlGgVS+FoFkdApFFZx3mmtXV9lChoBmgJaA9DCPG4qBbR+XJAlIaUUpRoFU0KAWgWR0CkUaX++/QCdX2UKGgGaAloD0MIMgOV8W+mc0CUhpRSlGgVS79oFkdApFHB5TqB3HV9lChoBmgJaA9DCB123zE8LXBAlIaUUpRoFUvhaBZHQKRR43VCojx1fZQoaAZoCWgPQwisjbET3k5yQJSGlFKUaBVLymgWR0CkUgCs4ku6dX2UKGgGaAloD0MIuaerOxZPdECUhpRSlGgVS9loFkdApFIfOhTOxHV9lChoBmgJaA9DCG2Oc5uwynJAlIaUUpRoFUv0aBZHQKRSaPH1e0J1fZQoaAZoCWgPQwgMycnEbX1wQJSGlFKUaBVNCQFoFkdApFKTqQiiZnV9lChoBmgJaA9DCPhPN1CgBHBAlIaUUpRoFUvpaBZHQKRSttqpLmJ1fZQoaAZoCWgPQwgdke9S6iFxQJSGlFKUaBVL9mgWR0CkUtsT37DVdX2UKGgGaAloD0MIUP9Z82O4cUCUhpRSlGgVS/1oFkdApFMloxpL3HV9lChoBmgJaA9DCNyfi4YMk3FAlIaUUpRoFUv9aBZHQKRTTfb9If91fZQoaAZoCWgPQwhC7iJMkYNyQJSGlFKUaBVNCAFoFkdApFNzmOlwcnV9lChoBmgJaA9DCHIW9rSD8XJAlIaUUpRoFUvOaBZHQKRTkL+glGB1fZQoaAZoCWgPQwhcO1ESUuxzQJSGlFKUaBVLymgWR0CkU6xtHhCMdX2UKGgGaAloD0MImWIOgs4ec0CUhpRSlGgVTRABaBZHQKRT9k92X9l1fZQoaAZoCWgPQwiOyHcpdYRvQJSGlFKUaBVLzWgWR0CkVBLSE12rdX2UKGgGaAloD0MIAhHiypkyc0CUhpRSlGgVS9hoFkdApFQyj59E1HV9lChoBmgJaA9DCBtkkpGzPkxAlIaUUpRoFU3oA2gWR0CkVgq8lHBldX2UKGgGaAloD0MIXpz4aoc6ckCUhpRSlGgVS8ZoFkdApFYlgKF7D3V9lChoBmgJaA9DCH1cGyoGj3JAlIaUUpRoFUu+aBZHQKRWQOwxFiN1fZQoaAZoCWgPQwjp19ZPf9VxQJSGlFKUaBVL7GgWR0CkVobedkJ8dX2UKGgGaAloD0MIkst/SL9uckCUhpRSlGgVTQsBaBZHQKRWriiItUZ1fZQoaAZoCWgPQwhGJuDXSGltQJSGlFKUaBVL4GgWR0CkVs3VkMCtdX2UKGgGaAloD0MIdowrLo7QckCUhpRSlGgVTQIBaBZHQKRW+NEw35x1fZQoaAZoCWgPQwhJn1bRn9ZwQJSGlFKUaBVL3GgWR0CkVz9jgAIZdX2UKGgGaAloD0MI7MIPzqdBcUCUhpRSlGgVS9NoFkdApFde4ZuQ63V9lChoBmgJaA9DCJC/tKiPBHNAlIaUUpRoFUvmaBZHQKRXf1xsEaF1fZQoaAZoCWgPQwiiRbbzfUduQJSGlFKUaBVL1mgWR0CkV5wcghbGdX2UKGgGaAloD0MIEFzlCQR+cECUhpRSlGgVS/9oFkdApFfoaNuLrHV9lChoBmgJaA9DCPILryT5q3FAlIaUUpRoFUvRaBZHQKRYBxUedTZ1fZQoaAZoCWgPQwh15h4SfmlyQJSGlFKUaBVLx2gWR0CkWCOB19v1dX2UKGgGaAloD0MId4L917ntcECUhpRSlGgVS/doFkdApFhIAS39aXV9lChoBmgJaA9DCBk4oKWrGnFAlIaUUpRoFUvAaBZHQKRYYnVoYel1fZQoaAZoCWgPQwioVImydyNwQJSGlFKUaBVNpwFoFkdApFjrDTBqK3V9lChoBmgJaA9DCNrIdVOKTXFAlIaUUpRoFUvCaBZHQKRZBvjOs1d1fZQoaAZoCWgPQwg2XOSebihyQJSGlFKUaBVLxmgWR0CkWSJXhfjTdX2UKGgGaAloD0MINdO9TmpZbkCUhpRSlGgVS+RoFkdApFlEL2HtW3V9lChoBmgJaA9DCEvJchJKFXJAlIaUUpRoFUvraBZHQKRZisbvPTp1fZQoaAZoCWgPQwj8NsR4za1xQJSGlFKUaBVNAAFoFkdApFmvGCI1tXV9lChoBmgJaA9DCGXDmsrid3FAlIaUUpRoFUvzaBZHQKRZ1t0mtyR1fZQoaAZoCWgPQwib54h814BzQJSGlFKUaBVNIwFoFkdApFoGhRIjGHV9lChoBmgJaA9DCDV9dsD1gHNAlIaUUpRoFUu6aBZHQKRaQeU6gdx1fZQoaAZoCWgPQwh24Qfn06lyQJSGlFKUaBVLw2gWR0CkWlv1tfoidX2UKGgGaAloD0MIW3o01RMLcECUhpRSlGgVS9NoFkdApFp6Bun/DXV9lChoBmgJaA9DCOHOhZFeyHNAlIaUUpRoFUvFaBZHQKRalyT6i0x1fZQoaAZoCWgPQwhWEW4yqlVyQJSGlFKUaBVL/mgWR0CkWr2X1J18dX2UKGgGaAloD0MIrYkFviICaUCUhpRSlGgVTaUCaBZHQKRbgBsANod1fZQoaAZoCWgPQwhrgqj7QBlyQJSGlFKUaBVL9GgWR0CkW6atDD0ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19536, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9Vc2Vycy9kcy9vcHQvYW5hY29uZGEzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvVXNlcnMvZHMvb3B0L2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ds_Unit1_LunaLander-v2_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9542a499d037ea6f22551f045f875441f89c49531632209bfee9235b5a384a24
|
3 |
+
size 146318
|
ds_Unit1_LunaLander-v2_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ds_Unit1_LunaLander-v2_model/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bc31d4ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bc31d4d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bc31d4dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bc31d4e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5bc31d4ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5bc31d4f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bc3159040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5bc31590d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bc3159160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bc31591f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bc3159280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5bc31d2450>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 3000320,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671696470261671000,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.00010666666666669933,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1n4+lrkcECUhpRSlIwBbJRL3owBdJRHQKRJQ8yN4qx1fZQoaAZoCWgPQwgdOj3vxqlxQJSGlFKUaBVNCAFoFkdApElsBsANonV9lChoBmgJaA9DCIhp39zfHXJAlIaUUpRoFUvfaBZHQKRJivCdjG11fZQoaAZoCWgPQwjqtG6DWsVvQJSGlFKUaBVL4GgWR0CkSc0Pxx1gdX2UKGgGaAloD0MIh8CRQIOacUCUhpRSlGgVS+1oFkdApEnulfqoqHV9lChoBmgJaA9DCHe+nxovpnNAlIaUUpRoFUvSaBZHQKRKC+AVfu11fZQoaAZoCWgPQwgHt7WFZ3puQJSGlFKUaBVNRAFoFkdApEpGYc/+sHV9lChoBmgJaA9DCDbn4JkQ/XFAlIaUUpRoFUvnaBZHQKRKi/UvwmV1fZQoaAZoCWgPQwjLSSh9If5xQJSGlFKUaBVNAAFoFkdApEqx+z+m33V9lChoBmgJaA9DCMsTCDvFBnJAlIaUUpRoFUvQaBZHQKRKzx4ptrN1fZQoaAZoCWgPQwi8Bn3pbRFvQJSGlFKUaBVL0mgWR0CkSu0AtFrmdX2UKGgGaAloD0MIVYhH4mXKcUCUhpRSlGgVS8hoFkdApEss6eXiSHV9lChoBmgJaA9DCFHZsKayu3FAlIaUUpRoFUvuaBZHQKRLUR/3Fkx1fZQoaAZoCWgPQwjEsS5uY1ZxQJSGlFKUaBVL7GgWR0CkS3JiiItUdX2UKGgGaAloD0MIsFQX8PLYc0CUhpRSlGgVS9xoFkdApEuS4OMER3V9lChoBmgJaA9DCJks7j/yLXBAlIaUUpRoFUvbaBZHQKRLsWEbo8p1fZQoaAZoCWgPQwjzBS0kILhyQJSGlFKUaBVLymgWR0CkS+8FhXr/dX2UKGgGaAloD0MIfsaFAyFGbkCUhpRSlGgVS99oFkdApEwO+ZgG8nV9lChoBmgJaA9DCNKMRdNZXnNAlIaUUpRoFUvkaBZHQKRML6tT1kF1fZQoaAZoCWgPQwiHGK95VRFyQJSGlFKUaBVL52gWR0CkTFR9w3o+dX2UKGgGaAloD0MID5nyISgvcECUhpRSlGgVS+loFkdApEyXkHUtqnV9lChoBmgJaA9DCHeeeM4WcnNAlIaUUpRoFUvFaBZHQKRMsmgJ1JV1fZQoaAZoCWgPQwgoucMm8lZwQJSGlFKUaBVL1GgWR0CkTNC++M6zdX2UKGgGaAloD0MI3Zp0W+IvcUCUhpRSlGgVS/toFkdApEz2kadc0XV9lChoBmgJaA9DCHR7SWO0A3BAlIaUUpRoFUvNaBZHQKRNFE7W/ah1fZQoaAZoCWgPQwhDdAgcyVRxQJSGlFKUaBVL0GgWR0CkTVbL+xW1dX2UKGgGaAloD0MIjXqIRvf5cUCUhpRSlGgVTQ8BaBZHQKRNgZ2IO6N1fZQoaAZoCWgPQwj/y7VogdpuQJSGlFKUaBVL72gWR0CkTaVdgOSXdX2UKGgGaAloD0MI0SNGzy2FcECUhpRSlGgVS+VoFkdApE3HH93r2XV9lChoBmgJaA9DCDUJ3pDG2HBAlIaUUpRoFUvRaBZHQKRN5AHmig11fZQoaAZoCWgPQwigUbr0b1VwQJSGlFKUaBVL3mgWR0CkTimtITXbdX2UKGgGaAloD0MI51QyABQtcUCUhpRSlGgVS+doFkdApE5NHpbD/HV9lChoBmgJaA9DCHak+s4vc3JAlIaUUpRoFUv0aBZHQKROcP6sQup1fZQoaAZoCWgPQwjGw3sObLVyQJSGlFKUaBVLx2gWR0CkTovZh8YydX2UKGgGaAloD0MIbATidf0HbkCUhpRSlGgVS+JoFkdApE7NbaAWi3V9lChoBmgJaA9DCPF/R1QoUmxAlIaUUpRoFUvcaBZHQKRO6/6frbB1fZQoaAZoCWgPQwi+afrsQKBxQJSGlFKUaBVL8GgWR0CkTw2oegctdX2UKGgGaAloD0MIRbjJqDK4b0CUhpRSlGgVS+loFkdApE8xQvYe1nV9lChoBmgJaA9DCORp+YGrdG5AlIaUUpRoFUv3aBZHQKRPV0pVjqh1fZQoaAZoCWgPQwj5E5UNK4pwQJSGlFKUaBVL6WgWR0CkT5vBrN4adX2UKGgGaAloD0MIt7QaErfXcECUhpRSlGgVS89oFkdApE+5y2hIv3V9lChoBmgJaA9DCMsQx7q47nJAlIaUUpRoFU0LAWgWR0CkT+EIomXxdX2UKGgGaAloD0MIXi13ZgLMcECUhpRSlGgVS91oFkdApFABnL7oCHV9lChoBmgJaA9DCHr/HydMylJAlIaUUpRoFUusaBZHQKRQO+jdpIt1fZQoaAZoCWgPQwhUqG4ufixwQJSGlFKUaBVL3WgWR0CkUFqIJqqPdX2UKGgGaAloD0MIAihGlsxab0CUhpRSlGgVS+JoFkdApFB58MNMG3V9lChoBmgJaA9DCKFKzR7oqHBAlIaUUpRoFUvlaBZHQKRQm1n/T9d1fZQoaAZoCWgPQwjRV5BmrBRxQJSGlFKUaBVL3GgWR0CkULlFUhmodX2UKGgGaAloD0MI/tXjvpV2ckCUhpRSlGgVS8hoFkdApFD7Pt2LYXV9lChoBmgJaA9DCC2yne+nVm5AlIaUUpRoFUvkaBZHQKRRHXJYDDF1fZQoaAZoCWgPQwgaiGUzR49yQJSGlFKUaBVLwGgWR0CkUTj8k2P1dX2UKGgGaAloD0MI8aDZdW9tb0CUhpRSlGgVS+FoFkdApFFZx3mmtXV9lChoBmgJaA9DCPG4qBbR+XJAlIaUUpRoFU0KAWgWR0CkUaX++/QCdX2UKGgGaAloD0MIMgOV8W+mc0CUhpRSlGgVS79oFkdApFHB5TqB3HV9lChoBmgJaA9DCB123zE8LXBAlIaUUpRoFUvhaBZHQKRR43VCojx1fZQoaAZoCWgPQwisjbET3k5yQJSGlFKUaBVLymgWR0CkUgCs4ku6dX2UKGgGaAloD0MIuaerOxZPdECUhpRSlGgVS9loFkdApFIfOhTOxHV9lChoBmgJaA9DCG2Oc5uwynJAlIaUUpRoFUv0aBZHQKRSaPH1e0J1fZQoaAZoCWgPQwgMycnEbX1wQJSGlFKUaBVNCQFoFkdApFKTqQiiZnV9lChoBmgJaA9DCPhPN1CgBHBAlIaUUpRoFUvpaBZHQKRSttqpLmJ1fZQoaAZoCWgPQwgdke9S6iFxQJSGlFKUaBVL9mgWR0CkUtsT37DVdX2UKGgGaAloD0MIUP9Z82O4cUCUhpRSlGgVS/1oFkdApFMloxpL3HV9lChoBmgJaA9DCNyfi4YMk3FAlIaUUpRoFUv9aBZHQKRTTfb9If91fZQoaAZoCWgPQwhC7iJMkYNyQJSGlFKUaBVNCAFoFkdApFNzmOlwcnV9lChoBmgJaA9DCHIW9rSD8XJAlIaUUpRoFUvOaBZHQKRTkL+glGB1fZQoaAZoCWgPQwhcO1ESUuxzQJSGlFKUaBVLymgWR0CkU6xtHhCMdX2UKGgGaAloD0MImWIOgs4ec0CUhpRSlGgVTRABaBZHQKRT9k92X9l1fZQoaAZoCWgPQwiOyHcpdYRvQJSGlFKUaBVLzWgWR0CkVBLSE12rdX2UKGgGaAloD0MIAhHiypkyc0CUhpRSlGgVS9hoFkdApFQyj59E1HV9lChoBmgJaA9DCBtkkpGzPkxAlIaUUpRoFU3oA2gWR0CkVgq8lHBldX2UKGgGaAloD0MIXpz4aoc6ckCUhpRSlGgVS8ZoFkdApFYlgKF7D3V9lChoBmgJaA9DCH1cGyoGj3JAlIaUUpRoFUu+aBZHQKRWQOwxFiN1fZQoaAZoCWgPQwjp19ZPf9VxQJSGlFKUaBVL7GgWR0CkVobedkJ8dX2UKGgGaAloD0MIkst/SL9uckCUhpRSlGgVTQsBaBZHQKRWriiItUZ1fZQoaAZoCWgPQwhGJuDXSGltQJSGlFKUaBVL4GgWR0CkVs3VkMCtdX2UKGgGaAloD0MIdowrLo7QckCUhpRSlGgVTQIBaBZHQKRW+NEw35x1fZQoaAZoCWgPQwhJn1bRn9ZwQJSGlFKUaBVL3GgWR0CkVz9jgAIZdX2UKGgGaAloD0MI7MIPzqdBcUCUhpRSlGgVS9NoFkdApFde4ZuQ63V9lChoBmgJaA9DCJC/tKiPBHNAlIaUUpRoFUvmaBZHQKRXf1xsEaF1fZQoaAZoCWgPQwiiRbbzfUduQJSGlFKUaBVL1mgWR0CkV5wcghbGdX2UKGgGaAloD0MIEFzlCQR+cECUhpRSlGgVS/9oFkdApFfoaNuLrHV9lChoBmgJaA9DCPILryT5q3FAlIaUUpRoFUvRaBZHQKRYBxUedTZ1fZQoaAZoCWgPQwh15h4SfmlyQJSGlFKUaBVLx2gWR0CkWCOB19v1dX2UKGgGaAloD0MId4L917ntcECUhpRSlGgVS/doFkdApFhIAS39aXV9lChoBmgJaA9DCBk4oKWrGnFAlIaUUpRoFUvAaBZHQKRYYnVoYel1fZQoaAZoCWgPQwioVImydyNwQJSGlFKUaBVNpwFoFkdApFjrDTBqK3V9lChoBmgJaA9DCNrIdVOKTXFAlIaUUpRoFUvCaBZHQKRZBvjOs1d1fZQoaAZoCWgPQwg2XOSebihyQJSGlFKUaBVLxmgWR0CkWSJXhfjTdX2UKGgGaAloD0MINdO9TmpZbkCUhpRSlGgVS+RoFkdApFlEL2HtW3V9lChoBmgJaA9DCEvJchJKFXJAlIaUUpRoFUvraBZHQKRZisbvPTp1fZQoaAZoCWgPQwj8NsR4za1xQJSGlFKUaBVNAAFoFkdApFmvGCI1tXV9lChoBmgJaA9DCGXDmsrid3FAlIaUUpRoFUvzaBZHQKRZ1t0mtyR1fZQoaAZoCWgPQwib54h814BzQJSGlFKUaBVNIwFoFkdApFoGhRIjGHV9lChoBmgJaA9DCDV9dsD1gHNAlIaUUpRoFUu6aBZHQKRaQeU6gdx1fZQoaAZoCWgPQwh24Qfn06lyQJSGlFKUaBVLw2gWR0CkWlv1tfoidX2UKGgGaAloD0MIW3o01RMLcECUhpRSlGgVS9NoFkdApFp6Bun/DXV9lChoBmgJaA9DCOHOhZFeyHNAlIaUUpRoFUvFaBZHQKRalyT6i0x1fZQoaAZoCWgPQwhWEW4yqlVyQJSGlFKUaBVL/mgWR0CkWr2X1J18dX2UKGgGaAloD0MIrYkFviICaUCUhpRSlGgVTaUCaBZHQKRbgBsANod1fZQoaAZoCWgPQwhrgqj7QBlyQJSGlFKUaBVL9GgWR0CkW6atDD0ldWUu"
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 19536,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.01,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9Vc2Vycy9kcy9vcHQvYW5hY29uZGEzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvVXNlcnMvZHMvb3B0L2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
ds_Unit1_LunaLander-v2_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b1324f6905a3359a76e4a62e67f3e2d224cfa05ea71cb790ee25862c6fc19a0
|
3 |
+
size 88057
|
ds_Unit1_LunaLander-v2_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4906866b8df027fc6324363ea986603a16ae81e5739ad3dca2da1ff8616d9bcc
|
3 |
+
size 43201
|
ds_Unit1_LunaLander-v2_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ds_Unit1_LunaLander-v2_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (190 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 275.4918279413759, "std_reward": 16.161615923823067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T11:25:59.238530"}
|