Daga2001 commited on
Commit
1f463d5
·
verified ·
1 Parent(s): d0607ab

Training complete with metrics

Browse files
Files changed (2) hide show
  1. README.md +88 -7
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,11 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
- # BETO Base Cased finetuned on CONLL2002
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  ## Model description
5
- This is a BETO base cased model fine-tuned on the CONLL2002 dataset for Named Entity Recognition (NER).
6
 
7
- ## Metrics
8
- - Precision: 0.8607856650585803
9
- - Recall: 0.8609834558823529
10
- - F1-score: 0.860884549109707
11
- - Accuracy: 0.9786860155319993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ base_model: NazaGara/NER-fine-tuned-BETO
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2002
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: beto-base-cased-finetuned-conll2002
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2002
21
+ type: conll2002
22
+ config: es
23
+ split: validation
24
+ args: es
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8607856650585803
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.8609834558823529
32
+ - name: F1
33
+ type: f1
34
+ value: 0.860884549109707
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9786860155319993
38
+ ---
39
 
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # beto-base-cased-finetuned-conll2002
44
+
45
+ This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1281
48
+ - Precision: 0.8608
49
+ - Recall: 0.8610
50
+ - F1: 0.8609
51
+ - Accuracy: 0.9787
52
 
53
  ## Model description
 
54
 
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.019 | 1.0 | 1041 | 0.1095 | 0.8581 | 0.8628 | 0.8604 | 0.9790 |
83
+ | 0.018 | 2.0 | 2082 | 0.1121 | 0.8461 | 0.8589 | 0.8525 | 0.9783 |
84
+ | 0.0133 | 3.0 | 3123 | 0.1281 | 0.8608 | 0.8610 | 0.8609 | 0.9787 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.41.2
90
+ - Pytorch 2.3.0+cu121
91
+ - Datasets 2.19.2
92
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:23ed81a0157bbb495dc87cac5b52d752ee24b159d7b4daba761b134e10b11654
3
  size 437092180
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b073229c5dbc172b65201c4e42cfaac512e09280b47dbcb0583e4c48fe5c1b1
3
  size 437092180