Daemontatox Jin-xu commited on
Commit
bc90602
·
verified ·
0 Parent(s):

Duplicate from Qwen/Qwen2.5-Omni-7B

Browse files

Co-authored-by: Xu <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2025 Alibaba Cloud
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,886 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-Omni-7B/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ tags:
8
+ - multimodal
9
+ library_name: transformers
10
+ pipeline_tag: any-to-any
11
+ ---
12
+
13
+ # Qwen2.5-Omni
14
+ <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
15
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
16
+ </a>
17
+
18
+
19
+ ## OverView
20
+ ### Introduction
21
+ Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner.
22
+
23
+ <p align="center">
24
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/>
25
+ <p>
26
+
27
+ ### Key Features
28
+
29
+ * **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We prpose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio.
30
+
31
+ * **Real-Time Voice and Video Chat**: Architecture Designed for fully real-time interactions, supporting chunked input and immediate output.
32
+
33
+ * **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation.
34
+
35
+ * **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B.
36
+
37
+ * **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K.
38
+
39
+ ### Model Architecture
40
+
41
+ <p align="center">
42
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/>
43
+ <p>
44
+
45
+ ### Performance
46
+
47
+ We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness).
48
+
49
+ <p align="center">
50
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png"/>
51
+ <p>
52
+
53
+ <details>
54
+ <summary>Multimodality -> Text</summary>
55
+
56
+ <table class="tg"><thead>
57
+ <tr>
58
+ <th class="tg-0lax">Datasets</th>
59
+ <th class="tg-0lax">Model</th>
60
+ <th class="tg-0lax">Performance</th>
61
+ </tr></thead>
62
+ <tbody>
63
+ <tr>
64
+ <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td>
65
+ <td class="tg-0lax">Gemini-1.5-Pro</td>
66
+ <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td>
67
+ </tr>
68
+ <tr>
69
+ <td class="tg-0lax">MIO-Instruct</td>
70
+ <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td>
71
+ </tr>
72
+ <tr>
73
+ <td class="tg-0lax">AnyGPT (7B)</td>
74
+ <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td>
75
+ </tr>
76
+ <tr>
77
+ <td class="tg-0lax">video-SALMONN</td>
78
+ <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td>
79
+ </tr>
80
+ <tr>
81
+ <td class="tg-0lax">UnifiedIO2-xlarge</td>
82
+ <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td>
83
+ </tr>
84
+ <tr>
85
+ <td class="tg-0lax">UnifiedIO2-xxlarge</td>
86
+ <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td>
87
+ </tr>
88
+ <tr>
89
+ <td class="tg-0lax">MiniCPM-o</td>
90
+ <td class="tg-0lax">-|-|-|40.50%</td>
91
+ </tr>
92
+ <tr>
93
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
94
+ <td class="tg-0lax">-|-|-|42.90%</td>
95
+ </tr>
96
+ <tr>
97
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
98
+ <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td>
99
+ </tr>
100
+ </tbody></table>
101
+ </details>
102
+
103
+
104
+ <details>
105
+ <summary>Audio -> Text</summary>
106
+
107
+
108
+ <table class="tg"><thead>
109
+ <tr>
110
+ <th class="tg-0lax">Datasets</th>
111
+ <th class="tg-0lax">Model</th>
112
+ <th class="tg-0lax">Performance</th>
113
+ </tr></thead>
114
+ <tbody>
115
+ <tr>
116
+ <td class="tg-9j4x" colspan="3">ASR</td>
117
+ </tr>
118
+ <tr>
119
+ <td class="tg-0lax" rowspan="11">Librispeech<br>dev-clean | dev other | test-clean | test-other</td>
120
+ <td class="tg-0lax">SALMONN</td>
121
+ <td class="tg-0lax">-|-|2.1|4.9</td>
122
+ </tr>
123
+ <tr>
124
+ <td class="tg-0lax">SpeechVerse</td>
125
+ <td class="tg-0lax">-|-|2.1|4.4</td>
126
+ </tr>
127
+ <tr>
128
+ <td class="tg-0lax">Whisper-large-v3</td>
129
+ <td class="tg-0lax">-|-|1.8|3.6</td>
130
+ </tr>
131
+ <tr>
132
+ <td class="tg-0lax">Llama-3-8B</td>
133
+ <td class="tg-0lax">-|-|-|3.4</td>
134
+ </tr>
135
+ <tr>
136
+ <td class="tg-0lax">Llama-3-70B</td>
137
+ <td class="tg-0lax">-|-|-|3.1</td>
138
+ </tr>
139
+ <tr>
140
+ <td class="tg-0lax">Seed-ASR-Multilingual</td>
141
+ <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td>
142
+ </tr>
143
+ <tr>
144
+ <td class="tg-0lax">MiniCPM-o</td>
145
+ <td class="tg-0lax">-|-|1.7|-</td>
146
+ </tr>
147
+ <tr>
148
+ <td class="tg-0lax">MinMo</td>
149
+ <td class="tg-0lax">-|-|1.7|3.9</td>
150
+ </tr>
151
+ <tr>
152
+ <td class="tg-0lax">Qwen-Audio</td>
153
+ <td class="tg-0lax">1.8|4.0|2.0|4.2</td>
154
+ </tr>
155
+ <tr>
156
+ <td class="tg-0lax">Qwen2-Audio</td>
157
+ <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td>
158
+ </tr>
159
+ <tr>
160
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
161
+ <td class="tg-0lax">1.6|3.5|1.8|3.4</td>
162
+ </tr>
163
+ <tr>
164
+ <td class="tg-0lax" rowspan="4">Common Voice 15<br>en | zh | yue | fr</td>
165
+ <td class="tg-0lax">Whisper-large-v3</td>
166
+ <td class="tg-0lax">9.3|12.8|10.9|10.8</td>
167
+ </tr>
168
+ <tr>
169
+ <td class="tg-0lax">MinMo</td>
170
+ <td class="tg-0lax">7.9|6.3|6.4|8.5</td>
171
+ </tr>
172
+ <tr>
173
+ <td class="tg-0lax">Qwen2-Audio</td>
174
+ <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td>
175
+ </tr>
176
+ <tr>
177
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
178
+ <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td>
179
+ </tr>
180
+ <tr>
181
+ <td class="tg-0lax" rowspan="7">Fleurs<br>zh | en</td>
182
+ <td class="tg-0lax">Whisper-large-v3</td>
183
+ <td class="tg-0lax">7.7|4.1</td>
184
+ </tr>
185
+ <tr>
186
+ <td class="tg-0lax">Seed-ASR-Multilingual</td>
187
+ <td class="tg-0lax">-|<strong>3.4</strong></td>
188
+ </tr>
189
+ <tr>
190
+ <td class="tg-0lax">Megrez-3B-Omni</td>
191
+ <td class="tg-0lax">10.8|-</td>
192
+ </tr>
193
+ <tr>
194
+ <td class="tg-0lax">MiniCPM-o</td>
195
+ <td class="tg-0lax">4.4|-</td>
196
+ </tr>
197
+ <tr>
198
+ <td class="tg-0lax">MinMo</td>
199
+ <td class="tg-0lax">3.0|3.8</td>
200
+ </tr>
201
+ <tr>
202
+ <td class="tg-0lax">Qwen2-Audio</td>
203
+ <td class="tg-0lax">7.5|-</td>
204
+ </tr>
205
+ <tr>
206
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
207
+ <td class="tg-0lax"><strong>3.0</strong>|4.1</td>
208
+ </tr>
209
+ <tr>
210
+ <td class="tg-0lax" rowspan="5">Wenetspeech<br>test-net | test-meeting</td>
211
+ <td class="tg-0lax">Seed-ASR-Chinese</td>
212
+ <td class="tg-0lax"><strong>4.7|5.7</strong></td>
213
+ </tr>
214
+ <tr>
215
+ <td class="tg-0lax">Megrez-3B-Omni</td>
216
+ <td class="tg-0lax">-|16.4</td>
217
+ </tr>
218
+ <tr>
219
+ <td class="tg-0lax">MiniCPM-o</td>
220
+ <td class="tg-0lax">6.9|-</td>
221
+ </tr>
222
+ <tr>
223
+ <td class="tg-0lax">MinMo</td>
224
+ <td class="tg-0lax">6.8|7.4</td>
225
+ </tr>
226
+ <tr>
227
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
228
+ <td class="tg-0lax">5.9|7.7</td>
229
+ </tr>
230
+ <tr>
231
+ <td class="tg-0lax" rowspan="3">Voxpopuli-V1.0-en</td>
232
+ <td class="tg-0lax">Llama-3-8B</td>
233
+ <td class="tg-0lax">6.2</td>
234
+ </tr>
235
+ <tr>
236
+ <td class="tg-0lax">Llama-3-70B</td>
237
+ <td class="tg-0lax"><strong>5.7</strong></td>
238
+ </tr>
239
+ <tr>
240
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
241
+ <td class="tg-0lax">5.8</td>
242
+ </tr>
243
+ <tr>
244
+ <td class="tg-9j4x" colspan="3">S2TT</td>
245
+ </tr>
246
+ <tr>
247
+ <td class="tg-0lax" rowspan="8">CoVoST2<br>en-de | de-en | en-zh | zh-en</td>
248
+ <td class="tg-0lax">SALMONN</td>
249
+ <td class="tg-0lax">18.6|-|33.1|-</td>
250
+ </tr>
251
+ <tr>
252
+ <td class="tg-0lax">SpeechLLaMA</td>
253
+ <td class="tg-0lax">-|27.1|-|12.3</td>
254
+ </tr>
255
+ <tr>
256
+ <td class="tg-0lax">BLSP</td>
257
+ <td class="tg-0lax">14.1|-|-|-</td>
258
+ </tr>
259
+ <tr>
260
+ <td class="tg-0lax">MiniCPM-o</td>
261
+ <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td>
262
+ </tr>
263
+ <tr>
264
+ <td class="tg-0lax">MinMo</td>
265
+ <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td>
266
+ </tr>
267
+ <tr>
268
+ <td class="tg-0lax">Qwen-Audio</td>
269
+ <td class="tg-0lax">25.1|33.9|41.5|15.7</td>
270
+ </tr>
271
+ <tr>
272
+ <td class="tg-0lax">Qwen2-Audio</td>
273
+ <td class="tg-0lax">29.9|35.2|45.2|24.4</td>
274
+ </tr>
275
+ <tr>
276
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
277
+ <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td>
278
+ </tr>
279
+ <tr>
280
+ <td class="tg-9j4x" colspan="3">SER</td>
281
+ </tr>
282
+ <tr>
283
+ <td class="tg-0lax" rowspan="5">Meld</td>
284
+ <td class="tg-0lax">WavLM-large</td>
285
+ <td class="tg-0lax">0.542</td>
286
+ </tr>
287
+ <tr>
288
+ <td class="tg-0lax">MiniCPM-o</td>
289
+ <td class="tg-0lax">0.524</td>
290
+ </tr>
291
+ <tr>
292
+ <td class="tg-0lax">Qwen-Audio</td>
293
+ <td class="tg-0lax">0.557</td>
294
+ </tr>
295
+ <tr>
296
+ <td class="tg-0lax">Qwen2-Audio</td>
297
+ <td class="tg-0lax">0.553</td>
298
+ </tr>
299
+ <tr>
300
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
301
+ <td class="tg-0lax"><strong>0.570</strong></td>
302
+ </tr>
303
+ <tr>
304
+ <td class="tg-9j4x" colspan="3">VSC</td>
305
+ </tr>
306
+ <tr>
307
+ <td class="tg-0lax" rowspan="5">VocalSound</td>
308
+ <td class="tg-0lax">CLAP</td>
309
+ <td class="tg-0lax">0.495</td>
310
+ </tr>
311
+ <tr>
312
+ <td class="tg-0lax">Pengi</td>
313
+ <td class="tg-0lax">0.604</td>
314
+ </tr>
315
+ <tr>
316
+ <td class="tg-0lax">Qwen-Audio</td>
317
+ <td class="tg-0lax">0.929</td>
318
+ </tr>
319
+ <tr>
320
+ <td class="tg-0lax">Qwen2-Audio</td>
321
+ <td class="tg-0lax"><strong>0.939</strong></td>
322
+ </tr>
323
+ <tr>
324
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
325
+ <td class="tg-0lax"><strong>0.939</strong></td>
326
+ </tr>
327
+ <tr>
328
+ <td class="tg-9j4x" colspan="3">Music</td>
329
+ </tr>
330
+ <tr>
331
+ <td class="tg-0lax" rowspan="2">GiantSteps Tempo</td>
332
+ <td class="tg-0lax">Llark-7B</td>
333
+ <td class="tg-0lax">0.86</td>
334
+ </tr>
335
+ <tr>
336
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
337
+ <td class="tg-0lax"><strong>0.88</strong></td>
338
+ </tr>
339
+ <tr>
340
+ <td class="tg-0lax" rowspan="2">MusicCaps</td>
341
+ <td class="tg-0lax">LP-MusicCaps</td>
342
+ <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|<strong>0.129</strong>|0.130</td>
343
+ </tr>
344
+ <tr>
345
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
346
+ <td class="tg-0lax"><strong>0.328</strong>|<strong>0.162</strong>|<strong>0.090</strong>|0.055|0.127|<strong>0.225</strong></td>
347
+ </tr>
348
+ <tr>
349
+ <td class="tg-9j4x" colspan="3">Audio Reasoning</td>
350
+ </tr>
351
+ <tr>
352
+ <td class="tg-0lax" rowspan="3">MMAU<br>Sound | Music | Speech | Avg</td>
353
+ <td class="tg-0lax">Gemini-Pro-V1.5</td>
354
+ <td class="tg-0lax">56.75|49.40|58.55|54.90</td>
355
+ </tr>
356
+ <tr>
357
+ <td class="tg-0lax">Qwen2-Audio</td>
358
+ <td class="tg-0lax">54.95|50.98|42.04|49.20</td>
359
+ </tr>
360
+ <tr>
361
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
362
+ <td class="tg-0lax"><strong>67.87|69.16|59.76|65.60</strong></td>
363
+ </tr>
364
+ <tr>
365
+ <td class="tg-9j4x" colspan="3">Voice Chatting</td>
366
+ </tr>
367
+ <tr>
368
+ <td class="tg-0lax" rowspan="8">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td>
369
+ <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
370
+ <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td>
371
+ </tr>
372
+ <tr>
373
+ <td class="tg-0lax">MERaLiON</td>
374
+ <td class="tg-0lax">4.50|3.77|55.06|34.95</td>
375
+ </tr>
376
+ <tr>
377
+ <td class="tg-0lax">Megrez-3B-Omni</td>
378
+ <td class="tg-0lax">3.50|2.95|25.95|27.03</td>
379
+ </tr>
380
+ <tr>
381
+ <td class="tg-0lax">Lyra-Base</td>
382
+ <td class="tg-0lax">3.85|3.50|38.25|49.74</td>
383
+ </tr>
384
+ <tr>
385
+ <td class="tg-0lax">MiniCPM-o</td>
386
+ <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td>
387
+ </tr>
388
+ <tr>
389
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
390
+ <td class="tg-0lax">4.50|4.05|43.40|57.25</td>
391
+ </tr>
392
+ <tr>
393
+ <td class="tg-0lax">Qwen2-Audio</td>
394
+ <td class="tg-0lax">3.74|3.43|35.71|35.72</td>
395
+ </tr>
396
+ <tr>
397
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
398
+ <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td>
399
+ </tr>
400
+ <tr>
401
+ <td class="tg-0lax" rowspan="8">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td>
402
+ <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td>
403
+ <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td>
404
+ </tr>
405
+ <tr>
406
+ <td class="tg-0lax">MERaLiON</td>
407
+ <td class="tg-0lax">27.23|62.93|94.81|62.91</td>
408
+ </tr>
409
+ <tr>
410
+ <td class="tg-0lax">Megrez-3B-Omni</td>
411
+ <td class="tg-0lax">28.35|25.71|87.69|46.25</td>
412
+ </tr>
413
+ <tr>
414
+ <td class="tg-0lax">Lyra-Base</td>
415
+ <td class="tg-0lax">72.75|36.28|59.62|57.66</td>
416
+ </tr>
417
+ <tr>
418
+ <td class="tg-0lax">MiniCPM-o</td>
419
+ <td class="tg-0lax">78.02|49.25|97.69|71.69</td>
420
+ </tr>
421
+ <tr>
422
+ <td class="tg-0lax">Baichuan-Omni-1.5</td>
423
+ <td class="tg-0lax">74.51|54.54|97.31|71.14</td>
424
+ </tr>
425
+ <tr>
426
+ <td class="tg-0lax">Qwen2-Audio</td>
427
+ <td class="tg-0lax">49.45|26.33|96.73|55.35</td>
428
+ </tr>
429
+ <tr>
430
+ <td class="tg-0lax">Qwen2.5-Omni-7B</td>
431
+ <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td>
432
+ </tr>
433
+ </tbody></table>
434
+ </details>
435
+
436
+ <details>
437
+ <summary>Image -> Text</summary>
438
+
439
+ | Dataset | Qwen2.5-Omni-7B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini |
440
+ |--------------------------------|--------------|------------|---------------|-------------|
441
+ | MMMU<sub>val</sub> | 59.2 | 53.9 | 58.6 | **60.0** |
442
+ | MMMU-Pro<sub>overall</sub> | 36.6 | - | **38.3** | 37.6 |
443
+ | MathVista<sub>testmini</sub> | 67.9 | **71.9** | 68.2 | 52.5 |
444
+ | MathVision<sub>full</sub> | 25.0 | 23.1 | **25.1** | - |
445
+ | MMBench-V1.1-EN<sub>test</sub> | 81.8 | 80.5 | **82.6** | 76.0 |
446
+ | MMVet<sub>turbo</sub> | 66.8 | **67.5** | 67.1 | 66.9 |
447
+ | MMStar | **64.0** | **64.0** | 63.9 | 54.8 |
448
+ | MME<sub>sum</sub> | 2340 | **2372** | 2347 | 2003 |
449
+ | MuirBench | 59.2 | - | **59.2** | - |
450
+ | CRPE<sub>relation</sub> | **76.5** | - | 76.4 | - |
451
+ | RealWorldQA<sub>avg</sub> | 70.3 | **71.9** | 68.5 | - |
452
+ | MME-RealWorld<sub>en</sub> | **61.6** | - | 57.4 | - |
453
+ | MM-MT-Bench | 6.0 | - | **6.3** | - |
454
+ | AI2D | 83.2 | **85.8** | 83.9 | - |
455
+ | TextVQA<sub>val</sub> | 84.4 | 83.2 | **84.9** | - |
456
+ | DocVQA<sub>test</sub> | 95.2 | 93.5 | **95.7** | - |
457
+ | ChartQA<sub>test Avg</sub> | 85.3 | 84.9 | **87.3** | - |
458
+ | OCRBench_V2<sub>en</sub> | **57.8** | - | 56.3 | - |
459
+
460
+
461
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro |
462
+ |--------------------------|--------------|---------------|----------------|----------------|
463
+ | Refcoco<sub>val</sub> | 90.5 | 90.0 | **90.6** | 73.2 |
464
+ | Refcoco<sub>textA</sub> | **93.5** | 92.5 | 93.2 | 72.9 |
465
+ | Refcoco<sub>textB</sub> | 86.6 | 85.4 | **88.2** | 74.6 |
466
+ | Refcoco+<sub>val</sub> | 85.4 | 84.2 | **88.2** | 62.5 |
467
+ | Refcoco+<sub>textA</sub> | **91.0** | 89.1 | 89.0 | 63.9 |
468
+ | Refcoco+<sub>textB</sub> | **79.3** | 76.9 | 75.9 | 65.0 |
469
+ | Refcocog+<sub>val</sub> | **87.4** | 87.2 | 86.1 | 75.2 |
470
+ | Refcocog+<sub>test</sub> | **87.9** | 87.2 | 87.0 | 76.2 |
471
+ | ODinW | 42.4 | 37.3 | **55.0** | 36.7 |
472
+ | PointGrounding | 66.5 | **67.3** | - | - |
473
+ </details>
474
+
475
+
476
+ <details>
477
+ <summary>Video(without audio) -> Text</summary>
478
+
479
+ | Dataset | Qwen2.5-Omni-7B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini |
480
+ |-----------------------------|--------------|------------|---------------|-------------|
481
+ | Video-MME<sub>w/o sub</sub> | 64.3 | 63.9 | **65.1** | 64.8 |
482
+ | Video-MME<sub>w sub</sub> | **72.4** | 67.9 | 71.6 | - |
483
+ | MVBench | **70.3** | 67.2 | 69.6 | - |
484
+ | EgoSchema<sub>test</sub> | **68.6** | 63.2 | 65.0 | - |
485
+ </details>
486
+
487
+ <details>
488
+ <summary>Zero-shot Speech Generation</summary>
489
+
490
+
491
+ <table class="tg"><thead>
492
+ <tr>
493
+ <th class="tg-0lax">Datasets</th>
494
+ <th class="tg-0lax">Model</th>
495
+ <th class="tg-0lax">Performance</th>
496
+ </tr></thead>
497
+ <tbody>
498
+ <tr>
499
+ <td class="tg-9j4x" colspan="3">Content Consistency</td>
500
+ </tr>
501
+ <tr>
502
+ <td class="tg-0lax" rowspan="9">SEED<br>test-zh | test-en | test-hard </td>
503
+ <td class="tg-0lax">Seed-TTS_ICL</td>
504
+ <td class="tg-0lax">1.11 | 2.24 | 7.58</td>
505
+ </tr>
506
+ <tr>
507
+ <td class="tg-0lax">Seed-TTS_RL</td>
508
+ <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td>
509
+ </tr>
510
+ <tr>
511
+ <td class="tg-0lax">MaskGCT</td>
512
+ <td class="tg-0lax">2.27 | 2.62 | 10.27</td>
513
+ </tr>
514
+ <tr>
515
+ <td class="tg-0lax">E2_TTS</td>
516
+ <td class="tg-0lax">1.97 | 2.19 | -</td>
517
+ </tr>
518
+ <tr>
519
+ <td class="tg-0lax">F5-TTS</td>
520
+ <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td>
521
+ </tr>
522
+ <tr>
523
+ <td class="tg-0lax">CosyVoice 2</td>
524
+ <td class="tg-0lax">1.45 | 2.57 | 6.83</td>
525
+ </tr>
526
+ <tr>
527
+ <td class="tg-0lax">CosyVoice 2-S</td>
528
+ <td class="tg-0lax">1.45 | 2.38 | 8.08</td>
529
+ </tr>
530
+ <tr>
531
+ <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
532
+ <td class="tg-0lax">1.70 | 2.72 | 7.97</td>
533
+ </tr>
534
+ <tr>
535
+ <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
536
+ <td class="tg-0lax">1.42 | 2.32 | 6.54</td>
537
+ </tr>
538
+ <tr>
539
+ <td class="tg-9j4x" colspan="3">Speaker Similarity</td>
540
+ </tr>
541
+ <tr>
542
+ <td class="tg-0lax" rowspan="9">SEED<br>test-zh | test-en | test-hard </td>
543
+ <td class="tg-0lax">Seed-TTS_ICL</td>
544
+ <td class="tg-0lax">0.796 | 0.762 | 0.776</td>
545
+ </tr>
546
+ <tr>
547
+ <td class="tg-0lax">Seed-TTS_RL</td>
548
+ <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td>
549
+ </tr>
550
+ <tr>
551
+ <td class="tg-0lax">MaskGCT</td>
552
+ <td class="tg-0lax">0.774 | 0.714 | 0.748</td>
553
+ </tr>
554
+ <tr>
555
+ <td class="tg-0lax">E2_TTS</td>
556
+ <td class="tg-0lax">0.730 | 0.710 | -</td>
557
+ </tr>
558
+ <tr>
559
+ <td class="tg-0lax">F5-TTS</td>
560
+ <td class="tg-0lax">0.741 | 0.647 | 0.713</td>
561
+ </tr>
562
+ <tr>
563
+ <td class="tg-0lax">CosyVoice 2</td>
564
+ <td class="tg-0lax">0.748 | 0.652 | 0.724</td>
565
+ </tr>
566
+ <tr>
567
+ <td class="tg-0lax">CosyVoice 2-S</td>
568
+ <td class="tg-0lax">0.753 | 0.654 | 0.732</td>
569
+ </tr>
570
+ <tr>
571
+ <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td>
572
+ <td class="tg-0lax">0.752 | 0.632 | 0.747</td>
573
+ </tr>
574
+ <tr>
575
+ <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td>
576
+ <td class="tg-0lax">0.754 | 0.641 | 0.752</td>
577
+ </tr>
578
+ </tbody></table>
579
+ </details>
580
+
581
+ <details>
582
+ <summary>Text -> Text</summary>
583
+
584
+ | Dataset | Qwen2.5-Omni-7B | Qwen2.5-7B | Qwen2-7B | Llama3.1-8B | Gemma2-9B |
585
+ |-----------------------------------|-----------|------------|----------|-------------|-----------|
586
+ | MMLU-Pro | 47.0 | **56.3** | 44.1 | 48.3 | 52.1 |
587
+ | MMLU-redux | 71.0 | **75.4** | 67.3 | 67.2 | 72.8 |
588
+ | LiveBench<sub>0831</sub> | 29.6 | **35.9** | 29.2 | 26.7 | 30.6 |
589
+ | GPQA | 30.8 | **36.4** | 34.3 | 32.8 | 32.8 |
590
+ | MATH | 71.5 | **75.5** | 52.9 | 51.9 | 44.3 |
591
+ | GSM8K | 88.7 | **91.6** | 85.7 | 84.5 | 76.7 |
592
+ | HumanEval | 78.7 | **84.8** | 79.9 | 72.6 | 68.9 |
593
+ | MBPP | 73.2 | **79.2** | 67.2 | 69.6 | 74.9 |
594
+ | MultiPL-E | 65.8 | **70.4** | 59.1 | 50.7 | 53.4 |
595
+ | LiveCodeBench<sub>2305-2409</sub> | 24.6 | **28.7** | 23.9 | 8.3 | 18.9 |
596
+ </details>
597
+
598
+ ## Quickstart
599
+
600
+ Below, we provide simple examples to show how to use Qwen2.5-Omni with 🤗 Transformers. The codes of Qwen2.5-Omni on Hugging Face Transformers are in pull request stage and not merged into the main branch yet. Therefore, you may need to build from source to use it with command:
601
+ ```
602
+ pip uninstall transformers
603
+ pip install git+https://github.com/huggingface/transformers@3a1ead0aabed473eafe527915eea8c197d424356
604
+ pip install accelerate
605
+ ```
606
+ or you might encounter the following error:
607
+ ```
608
+ KeyError: 'qwen2_5_omni'
609
+ ```
610
+
611
+
612
+ We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed:
613
+
614
+ ```bash
615
+ # It's highly recommended to use `[decord]` feature for faster video loading.
616
+ pip install qwen-omni-utils[decord]
617
+ ```
618
+
619
+ If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
620
+
621
+ ### 🤗 Transformers Usage
622
+
623
+ Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`:
624
+
625
+ ```python
626
+ import soundfile as sf
627
+
628
+ from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor
629
+ from qwen_omni_utils import process_mm_info
630
+
631
+ # default: Load the model on the available device(s)
632
+ model = Qwen2_5OmniModel.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto")
633
+
634
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving.
635
+ # model = Qwen2_5OmniModel.from_pretrained(
636
+ # "Qwen/Qwen2.5-Omni-7B",
637
+ # torch_dtype="auto",
638
+ # device_map="auto",
639
+ # attn_implementation="flash_attention_2",
640
+ # )
641
+
642
+ processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
643
+
644
+ conversation = [
645
+ {
646
+ "role": "system",
647
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
648
+ },
649
+ {
650
+ "role": "user",
651
+ "content": [
652
+ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"},
653
+ ],
654
+ },
655
+ ]
656
+
657
+ # Preparation for inference
658
+ text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
659
+ audios, images, videos = process_mm_info(conversation, use_audio_in_video=True)
660
+ inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
661
+ inputs = inputs.to(model.device).to(model.dtype)
662
+
663
+ # Inference: Generation of the output text and audio
664
+ text_ids, audio = model.generate(**inputs, use_audio_in_video=True)
665
+
666
+ text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
667
+ print(text)
668
+ sf.write(
669
+ "output.wav",
670
+ audio.reshape(-1).detach().cpu().numpy(),
671
+ samplerate=24000,
672
+ )
673
+ ```
674
+
675
+ <details>
676
+ <summary>Minimum GPU memory requirements</summary>
677
+
678
+ | Precision | 15(s) Video | 30(s) Video | 60(s) Video |
679
+ |-----------| ------------- | --------- | -------------- |
680
+ | FP32 | 93.56 GB | Not Recommend | Not Recommend |
681
+ | BF16 | 31.11 GB | 41.85 GB | 60.19 GB |
682
+
683
+ Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator).
684
+ </details>
685
+
686
+ <details>
687
+ <summary>Video ULR resource usage</summary>
688
+
689
+ Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
690
+
691
+ | Backend | HTTP | HTTPS |
692
+ |-------------|------|-------|
693
+ | torchvision >= 0.19.0 | ✅ | ✅ |
694
+ | torchvision < 0.19.0 | ❌ | ❌ |
695
+ | decord | ✅ | ❌ |
696
+ </details>
697
+
698
+ <details>
699
+ <summary>Batch inference</summary>
700
+
701
+ The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example.
702
+
703
+ ```python
704
+ # Sample messages for batch inference
705
+
706
+ # Conversation with video only
707
+ conversation1 = [
708
+ {
709
+ "role": "system",
710
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
711
+ },
712
+ {
713
+ "role": "user",
714
+ "content": [
715
+ {"type": "video", "video": "/path/to/video.mp4"},
716
+ ]
717
+ }
718
+ ]
719
+
720
+ # Conversation with audio only
721
+ conversation2 = [
722
+ {
723
+ "role": "system",
724
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
725
+ },
726
+ {
727
+ "role": "user",
728
+ "content": [
729
+ {"type": "audio", "audio": "/path/to/audio.wav"},
730
+ ]
731
+ }
732
+ ]
733
+
734
+ # Conversation with pure text
735
+ conversation3 = [
736
+ {
737
+ "role": "system",
738
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
739
+ },
740
+ {
741
+ "role": "user",
742
+ "content": "who are you?"
743
+ }
744
+ ]
745
+
746
+
747
+ # Conversation with mixed media
748
+ conversation4 = [
749
+ {
750
+ "role": "system",
751
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
752
+ },
753
+ {
754
+ "role": "user",
755
+ "content": [
756
+ {"type": "image", "image": "/path/to/image.jpg"},
757
+ {"type": "video", "video": "/path/to/video.mp4"},
758
+ {"type": "audio", "audio": "/path/to/audio.wav"},
759
+ {"type": "text", "text": "What are the elements can you see and hear in these medias?"},
760
+ ],
761
+ }
762
+ ]
763
+
764
+ # Combine messages for batch processing
765
+ conversations = [conversation1, conversation2, conversation3, conversation4]
766
+
767
+ # Preparation for batch inference
768
+ text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False)
769
+ audios, images, videos = process_mm_info(conversations, use_audio_in_video=True)
770
+
771
+ inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
772
+ inputs = inputs.to(model.device).to(model.dtype)
773
+
774
+ # Batch Inference
775
+ text_ids = model.generate(**inputs, use_audio_in_video=True, return_audio=False)
776
+ text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
777
+ print(text)
778
+ ```
779
+ </details>
780
+
781
+ ### Usage Tips
782
+
783
+ #### Prompt for audio output
784
+ If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected.
785
+ ```
786
+ {
787
+ "role": "system",
788
+ "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
789
+ }
790
+ ```
791
+ #### Use audio in video
792
+ In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video.
793
+ ```python
794
+ # first place, in data preprocessing
795
+ audios, images, videos = process_mm_info(conversations, use_audio_in_video=True)
796
+ ```
797
+ ```python
798
+ # second place, in model inference
799
+ text_ids, audio = model.generate(**inputs, use_audio_in_video=True)
800
+ ```
801
+ It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these two places must be set to the same, otherwise unexpected results will occur.
802
+
803
+ #### Use audio output or not
804
+
805
+ The model supports both text and audio outputs, if users do not need audio outputs, they can set `enable_audio_output=False` in the `from_pretrained` function. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`.
806
+ ```python
807
+ model = Qwen2_5OmniModel.from_pretrained(
808
+ "Qwen/Qwen2.5-Omni-7B",
809
+ torch_dtype="auto",
810
+ device_map="auto",
811
+ enable_audio_output=False,
812
+ )
813
+ ```
814
+
815
+ In order to obtain a flexible experience, we recommend that users set `enable_audio_output` at `True` when initializing the model through `from_pretrained` function, and then decide whether to return audio when `generate` function is called. When `return_audio` is set to `False`, the model will only return text outputs to get text responses faster.
816
+
817
+ ```python
818
+ model = Qwen2_5OmniModel.from_pretrained(
819
+ "Qwen/Qwen2.5-Omni-7B",
820
+ torch_dtype="auto",
821
+ device_map="auto",
822
+ enable_audio_output=True,
823
+ )
824
+ ...
825
+ text_ids = model.generate(**inputs, return_audio=False)
826
+ ```
827
+
828
+ #### Change voice type of output audio
829
+ Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-7B"` checkpoint support two voice types as follow:
830
+
831
+ | Voice Type | Gender | Description |
832
+ |------------|--------|-------------|
833
+ | Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.|
834
+ | Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe.|
835
+
836
+ Users can use the `spk` parameter of `generate` function to specify the voice type. By defalut, if `spk` is not specified, the default voice type is `Chelsie`.
837
+
838
+ ```python
839
+ text_ids, audio = model.generate(**inputs, spk="Chelsie")
840
+ ```
841
+
842
+ ```python
843
+ text_ids, audio = model.generate(**inputs, spk="Ethan")
844
+ ```
845
+
846
+ #### Flash-Attention 2 to speed up generation
847
+
848
+ First, make sure to install the latest version of Flash Attention 2:
849
+
850
+ ```bash
851
+ pip install -U flash-attn --no-build-isolation
852
+ ```
853
+
854
+ Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
855
+
856
+ To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model:
857
+
858
+ ```python
859
+ from transformers import Qwen2_5OmniModel
860
+
861
+ model = Qwen2_5OmniModel.from_pretrained(
862
+ "Qwen/Qwen2.5-Omni-7B",
863
+ device_map="auto",
864
+ torch_dtype=torch.bfloat16,
865
+ attn_implementation="flash_attention_2",
866
+ )
867
+ ```
868
+
869
+
870
+ <!-- ## Citation
871
+
872
+ If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
873
+
874
+
875
+
876
+ ```BibTeX
877
+
878
+ @article{Qwen2.5-Omni,
879
+ title={Qwen2.5-Omni Technical Report},
880
+ author={},
881
+ journal={arXiv preprint arXiv:},
882
+ year={2025}
883
+ }
884
+ ``` -->
885
+
886
+ <br>
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|AUDIO|>": 151646,
5
+ "<|IMAGE|>": 151655,
6
+ "<|VIDEO|>": 151656,
7
+ "<|audio_bos|>": 151647,
8
+ "<|audio_eos|>": 151648,
9
+ "<|box_end|>": 151649,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|vision_bos|>": 151652,
22
+ "<|vision_eos|>": 151653,
23
+ "<|vision_pad|>": 151654
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5OmniModel"
4
+ ],
5
+ "enable_audio_output": true,
6
+ "enable_talker": true,
7
+ "model_type": "qwen2_5_omni",
8
+ "talker_config": {
9
+ "_attn_implementation_autoset": true,
10
+ "_name_or_path": "Qwen2.5-Omni-7B/talker",
11
+ "architectures": [
12
+ "Qwen2OmniTalkerForConditionalGeneration"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "audio_end_token_id": 151648,
16
+ "audio_start_token_id": 151647,
17
+ "audio_token_index": 151646,
18
+ "embedding_size": 3584,
19
+ "head_dim": 128,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 896,
22
+ "image_token_index": 151655,
23
+ "init_std": 0.02,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 18944,
26
+ "max_position_embeddings": 32768,
27
+ "max_window_layers": 28,
28
+ "model_type": "qwen2_5_omni_talker",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 24,
31
+ "num_key_value_heads": 4,
32
+ "position_id_per_seconds": 25,
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_scaling": {
35
+ "mrope_section": [
36
+ 16,
37
+ 24,
38
+ 24
39
+ ],
40
+ "rope_type": "default",
41
+ "type": "default"
42
+ },
43
+ "rope_theta": 1000000.0,
44
+ "seconds_per_chunk": 2,
45
+ "sliding_window": 32768,
46
+ "spatial_merge_size": 2,
47
+ "torch_dtype": "bfloat16",
48
+ "tts_codec_end_token_id": 8294,
49
+ "tts_codec_mask_token_id": 8296,
50
+ "tts_codec_pad_token_id": 8292,
51
+ "tts_codec_start_token_id": 8293,
52
+ "tts_text_end_token_id": 151861,
53
+ "tts_text_pad_token_id": 151859,
54
+ "tts_text_start_token_id": 151860,
55
+ "use_cache": true,
56
+ "use_mrope": false,
57
+ "use_sliding_window": false,
58
+ "video_token_index": 151656,
59
+ "vision_end_token_id": 151653,
60
+ "vision_start_token_id": 151652,
61
+ "vocab_size": 8448
62
+ },
63
+ "thinker_config": {
64
+ "_attn_implementation_autoset": true,
65
+ "_name_or_path": "Qwen2.5-Omni-7B/thinker",
66
+ "architectures": [
67
+ "Qwen2OmniNaViTThinkerForConditionalGeneration"
68
+ ],
69
+ "audio_config": {
70
+ "_attn_implementation_autoset": true,
71
+ "_name_or_path": "",
72
+ "activation_dropout": 0.0,
73
+ "activation_function": "gelu",
74
+ "add_cross_attention": false,
75
+ "architectures": null,
76
+ "attention_dropout": 0.0,
77
+ "bad_words_ids": null,
78
+ "begin_suppress_tokens": null,
79
+ "bos_token_id": null,
80
+ "chunk_size_feed_forward": 0,
81
+ "cross_attention_hidden_size": null,
82
+ "d_model": 1280,
83
+ "decoder_start_token_id": null,
84
+ "diversity_penalty": 0.0,
85
+ "do_sample": false,
86
+ "dropout": 0.0,
87
+ "early_stopping": false,
88
+ "encoder_attention_heads": 20,
89
+ "encoder_ffn_dim": 5120,
90
+ "encoder_layerdrop": 0.0,
91
+ "encoder_layers": 32,
92
+ "encoder_no_repeat_ngram_size": 0,
93
+ "eos_token_id": null,
94
+ "exponential_decay_length_penalty": null,
95
+ "finetuning_task": null,
96
+ "forced_bos_token_id": null,
97
+ "forced_eos_token_id": null,
98
+ "id2label": {
99
+ "0": "LABEL_0",
100
+ "1": "LABEL_1"
101
+ },
102
+ "init_std": 0.02,
103
+ "is_decoder": false,
104
+ "is_encoder_decoder": false,
105
+ "label2id": {
106
+ "LABEL_0": 0,
107
+ "LABEL_1": 1
108
+ },
109
+ "length_penalty": 1.0,
110
+ "max_length": 20,
111
+ "max_source_positions": 1500,
112
+ "min_length": 0,
113
+ "model_type": "qwen2_5_omni_audio_encoder",
114
+ "n_window": 100,
115
+ "no_repeat_ngram_size": 0,
116
+ "num_beam_groups": 1,
117
+ "num_beams": 1,
118
+ "num_hidden_layers": 32,
119
+ "num_mel_bins": 128,
120
+ "num_return_sequences": 1,
121
+ "output_attentions": false,
122
+ "output_dim": 3584,
123
+ "output_hidden_states": false,
124
+ "output_scores": false,
125
+ "pad_token_id": null,
126
+ "prefix": null,
127
+ "problem_type": null,
128
+ "pruned_heads": {},
129
+ "remove_invalid_values": false,
130
+ "repetition_penalty": 1.0,
131
+ "return_dict": true,
132
+ "return_dict_in_generate": false,
133
+ "scale_embedding": false,
134
+ "sep_token_id": null,
135
+ "suppress_tokens": null,
136
+ "task_specific_params": null,
137
+ "temperature": 1.0,
138
+ "tf_legacy_loss": false,
139
+ "tie_encoder_decoder": false,
140
+ "tie_word_embeddings": true,
141
+ "tokenizer_class": null,
142
+ "top_k": 50,
143
+ "top_p": 1.0,
144
+ "torch_dtype": null,
145
+ "torchscript": false,
146
+ "typical_p": 1.0,
147
+ "use_bfloat16": false
148
+ },
149
+ "text_config": {
150
+ "model_type": "qwen2_5_omni_text",
151
+ "hidden_act": "silu",
152
+ "hidden_size": 3584,
153
+ "init_std": 0.02,
154
+ "intermediate_size": 18944,
155
+ "vocab_size": 152064,
156
+ "num_attention_heads": 28,
157
+ "num_hidden_layers": 28,
158
+ "num_key_value_heads": 4,
159
+ "max_position_embeddings": 32768,
160
+ "max_window_layers": 28,
161
+ "rms_norm_eps": 1e-06,
162
+ "rope_scaling": {
163
+ "mrope_section": [
164
+ 16,
165
+ 24,
166
+ 24
167
+ ],
168
+ "rope_type": "default",
169
+ "type": "default"
170
+ },
171
+ "use_cache": true,
172
+ "rope_theta": 1000000.0,
173
+ "use_sliding_window": false,
174
+ "sliding_window": 32768,
175
+ "attention_dropout": 0.0
176
+ },
177
+ "audio_end_token_id": 151648,
178
+ "audio_start_token_id": 151647,
179
+ "audio_token_index": 151646,
180
+ "bos_token_id": 151644,
181
+ "eos_token_id": 151645,
182
+ "ignore_index": -100,
183
+ "image_token_index": 151655,
184
+ "init_std": 0.02,
185
+ "model_type": "qwen2_5_omni_thinker",
186
+ "pad_token_id": 151643,
187
+ "position_id_per_seconds": 25,
188
+ "seconds_per_chunk": 2,
189
+ "torch_dtype": "bfloat16",
190
+ "use_mrope": false,
191
+ "user_token_id": 872,
192
+ "video_token_index": 151656,
193
+ "vision_config": {
194
+ "_attn_implementation_autoset": true,
195
+ "_name_or_path": "",
196
+ "add_cross_attention": false,
197
+ "architectures": null,
198
+ "bad_words_ids": null,
199
+ "begin_suppress_tokens": null,
200
+ "bos_token_id": null,
201
+ "chunk_size_feed_forward": 0,
202
+ "cross_attention_hidden_size": null,
203
+ "decoder_start_token_id": null,
204
+ "depth": 32,
205
+ "diversity_penalty": 0.0,
206
+ "do_sample": false,
207
+ "early_stopping": false,
208
+ "embed_dim": 1280,
209
+ "encoder_no_repeat_ngram_size": 0,
210
+ "eos_token_id": null,
211
+ "exponential_decay_length_penalty": null,
212
+ "finetuning_task": null,
213
+ "forced_bos_token_id": null,
214
+ "forced_eos_token_id": null,
215
+ "fullatt_block_indexes": [
216
+ 7,
217
+ 15,
218
+ 23,
219
+ 31
220
+ ],
221
+ "hidden_act": "silu",
222
+ "hidden_size": 1280,
223
+ "id2label": {
224
+ "0": "LABEL_0",
225
+ "1": "LABEL_1"
226
+ },
227
+ "in_channels": 3,
228
+ "in_chans": 3,
229
+ "init_std": 0.02,
230
+ "intermediate_size": 3420,
231
+ "is_decoder": false,
232
+ "is_encoder_decoder": false,
233
+ "label2id": {
234
+ "LABEL_0": 0,
235
+ "LABEL_1": 1
236
+ },
237
+ "length_penalty": 1.0,
238
+ "max_length": 20,
239
+ "min_length": 0,
240
+ "model_type": "qwen2_5_omni_vision_encoder",
241
+ "no_repeat_ngram_size": 0,
242
+ "num_beam_groups": 1,
243
+ "num_beams": 1,
244
+ "num_heads": 16,
245
+ "num_return_sequences": 1,
246
+ "out_hidden_size": 3584,
247
+ "output_attentions": false,
248
+ "output_hidden_states": false,
249
+ "output_scores": false,
250
+ "pad_token_id": null,
251
+ "patch_size": 14,
252
+ "prefix": null,
253
+ "problem_type": null,
254
+ "pruned_heads": {},
255
+ "remove_invalid_values": false,
256
+ "repetition_penalty": 1.0,
257
+ "return_dict": true,
258
+ "return_dict_in_generate": false,
259
+ "sep_token_id": null,
260
+ "spatial_merge_size": 2,
261
+ "spatial_patch_size": 14,
262
+ "suppress_tokens": null,
263
+ "task_specific_params": null,
264
+ "temperature": 1.0,
265
+ "temporal_patch_size": 2,
266
+ "tf_legacy_loss": false,
267
+ "tie_encoder_decoder": false,
268
+ "tie_word_embeddings": true,
269
+ "tokenizer_class": null,
270
+ "tokens_per_second": 25,
271
+ "top_k": 50,
272
+ "top_p": 1.0,
273
+ "torch_dtype": null,
274
+ "torchscript": false,
275
+ "typical_p": 1.0,
276
+ "use_bfloat16": false,
277
+ "window_size": 112
278
+ },
279
+ "vision_end_token_id": 151653,
280
+ "vision_start_token_id": 151652,
281
+ "vision_token_id": 151654
282
+ },
283
+ "token2wav_config": {
284
+ "_attn_implementation_autoset": true,
285
+ "bigvgan_config": {
286
+ "_attn_implementation_autoset": true,
287
+ "_name_or_path": "",
288
+ "add_cross_attention": false,
289
+ "architectures": null,
290
+ "bad_words_ids": null,
291
+ "begin_suppress_tokens": null,
292
+ "bos_token_id": null,
293
+ "chunk_size_feed_forward": 0,
294
+ "cross_attention_hidden_size": null,
295
+ "decoder_start_token_id": null,
296
+ "diversity_penalty": 0.0,
297
+ "do_sample": false,
298
+ "early_stopping": false,
299
+ "encoder_no_repeat_ngram_size": 0,
300
+ "eos_token_id": null,
301
+ "exponential_decay_length_penalty": null,
302
+ "finetuning_task": null,
303
+ "forced_bos_token_id": null,
304
+ "forced_eos_token_id": null,
305
+ "id2label": {
306
+ "0": "LABEL_0",
307
+ "1": "LABEL_1"
308
+ },
309
+ "is_decoder": false,
310
+ "is_encoder_decoder": false,
311
+ "label2id": {
312
+ "LABEL_0": 0,
313
+ "LABEL_1": 1
314
+ },
315
+ "length_penalty": 1.0,
316
+ "max_length": 20,
317
+ "mel_dim": 80,
318
+ "min_length": 0,
319
+ "model_type": "qwen2_5_omni_bigvgan",
320
+ "no_repeat_ngram_size": 0,
321
+ "num_beam_groups": 1,
322
+ "num_beams": 1,
323
+ "num_return_sequences": 1,
324
+ "output_attentions": false,
325
+ "output_hidden_states": false,
326
+ "output_scores": false,
327
+ "pad_token_id": null,
328
+ "prefix": null,
329
+ "problem_type": null,
330
+ "pruned_heads": {},
331
+ "remove_invalid_values": false,
332
+ "repetition_penalty": 1.0,
333
+ "resblock_dilation_sizes": [
334
+ [
335
+ 1,
336
+ 3,
337
+ 5
338
+ ],
339
+ [
340
+ 1,
341
+ 3,
342
+ 5
343
+ ],
344
+ [
345
+ 1,
346
+ 3,
347
+ 5
348
+ ]
349
+ ],
350
+ "resblock_kernel_sizes": [
351
+ 3,
352
+ 7,
353
+ 11
354
+ ],
355
+ "return_dict": true,
356
+ "return_dict_in_generate": false,
357
+ "sep_token_id": null,
358
+ "suppress_tokens": null,
359
+ "task_specific_params": null,
360
+ "temperature": 1.0,
361
+ "tf_legacy_loss": false,
362
+ "tie_encoder_decoder": false,
363
+ "tie_word_embeddings": true,
364
+ "tokenizer_class": null,
365
+ "top_k": 50,
366
+ "top_p": 1.0,
367
+ "torch_dtype": null,
368
+ "torchscript": false,
369
+ "typical_p": 1.0,
370
+ "upsample_initial_channel": 1536,
371
+ "upsample_kernel_sizes": [
372
+ 11,
373
+ 7,
374
+ 4,
375
+ 4,
376
+ 4,
377
+ 4
378
+ ],
379
+ "upsample_rates": [
380
+ 5,
381
+ 3,
382
+ 2,
383
+ 2,
384
+ 2,
385
+ 2
386
+ ],
387
+ "use_bfloat16": false,
388
+ "use_bias_at_final": false
389
+ },
390
+ "dit_config": {
391
+ "_attn_implementation_autoset": true,
392
+ "_name_or_path": "",
393
+ "add_cross_attention": false,
394
+ "architectures": null,
395
+ "bad_words_ids": null,
396
+ "begin_suppress_tokens": null,
397
+ "bos_token_id": null,
398
+ "chunk_size_feed_forward": 0,
399
+ "cross_attention_hidden_size": null,
400
+ "decoder_start_token_id": null,
401
+ "depth": 22,
402
+ "dim": 1024,
403
+ "diversity_penalty": 0.0,
404
+ "do_sample": false,
405
+ "dropout": 0.1,
406
+ "early_stopping": false,
407
+ "emb_dim": 512,
408
+ "enc_attention_channels": 64,
409
+ "enc_channels": [
410
+ 256,
411
+ 256,
412
+ 256,
413
+ 256,
414
+ 768
415
+ ],
416
+ "enc_dilations": [
417
+ 1,
418
+ 2,
419
+ 3,
420
+ 4,
421
+ 1
422
+ ],
423
+ "enc_dim": 128,
424
+ "enc_emb_dim": 192,
425
+ "enc_global_context": true,
426
+ "enc_kernel_sizes": [
427
+ 5,
428
+ 3,
429
+ 3,
430
+ 3,
431
+ 1
432
+ ],
433
+ "enc_lin_neurons": 192,
434
+ "enc_res2net_scale": 2,
435
+ "enc_se_channels": 64,
436
+ "encoder_no_repeat_ngram_size": 0,
437
+ "eos_token_id": null,
438
+ "exponential_decay_length_penalty": null,
439
+ "ff_mult": 2,
440
+ "finetuning_task": null,
441
+ "forced_bos_token_id": null,
442
+ "forced_eos_token_id": null,
443
+ "head_dim": 64,
444
+ "heads": 16,
445
+ "id2label": {
446
+ "0": "LABEL_0",
447
+ "1": "LABEL_1"
448
+ },
449
+ "is_decoder": false,
450
+ "is_encoder_decoder": false,
451
+ "label2id": {
452
+ "LABEL_0": 0,
453
+ "LABEL_1": 1
454
+ },
455
+ "length_penalty": 1.0,
456
+ "max_length": 20,
457
+ "mel_dim": 80,
458
+ "min_length": 0,
459
+ "model_type": "qwen2_5_omni_dit",
460
+ "no_repeat_ngram_size": 0,
461
+ "num_beam_groups": 1,
462
+ "num_beams": 1,
463
+ "num_embeds": 8193,
464
+ "num_return_sequences": 1,
465
+ "output_attentions": false,
466
+ "output_hidden_states": false,
467
+ "output_scores": false,
468
+ "pad_token_id": null,
469
+ "prefix": null,
470
+ "problem_type": null,
471
+ "pruned_heads": {},
472
+ "remove_invalid_values": false,
473
+ "repeats": 2,
474
+ "repetition_penalty": 1.0,
475
+ "return_dict": true,
476
+ "return_dict_in_generate": false,
477
+ "sep_token_id": null,
478
+ "suppress_tokens": null,
479
+ "task_specific_params": null,
480
+ "temperature": 1.0,
481
+ "tf_legacy_loss": false,
482
+ "tie_encoder_decoder": false,
483
+ "tie_word_embeddings": true,
484
+ "tokenizer_class": null,
485
+ "top_k": 50,
486
+ "top_p": 1.0,
487
+ "torch_dtype": "float32",
488
+ "torchscript": false,
489
+ "typical_p": 1.0,
490
+ "use_bfloat16": false
491
+ },
492
+ "model_type": "qwen2_5_omni_token2wav"
493
+ },
494
+ "torch_dtype": "bfloat16",
495
+ "transformers_version": "4.50.0.dev0"
496
+ }
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.50.0.dev0"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5edb02fd7c98803239468375cc9dc1bff492865c2aa086b78f348597021d6cbc
3
+ size 4985055504
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c99b55c6e5bc63fd4b19d4dc23cdc3ddac4b0101bb3c0958cc2b5d05c2bbafe
3
+ size 4991496800
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad00c3ac296300db905934ed213c4077ff49b85d30c0099270c814e2c77ec812
3
+ size 4991496904
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152bc7d81441eaba22547d8d96c03d32dd592ce0e0e1d0e449347a4b23a532d3
3
+ size 4969489824
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8b18276481ba8cdf4fe2c98ac4c7a2da6e0d1c8a51850d162a391760cb2b81e
3
+ size 2425322160
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 300,
3
+ "dither": 0.0,
4
+ "feature_extractor_type": "WhisperFeatureExtractor",
5
+ "feature_size": 128,
6
+ "hop_length": 160,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Qwen2VLImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "max_pixels": 12845056,
19
+ "merge_size": 2,
20
+ "min_pixels": 3136,
21
+ "n_fft": 400,
22
+ "n_samples": 4800000,
23
+ "nb_max_frames": 30000,
24
+ "padding_side": "right",
25
+ "padding_value": 0.0,
26
+ "patch_size": 14,
27
+ "processor_class": "Qwen2_5OmniProcessor",
28
+ "return_attention_mask": true,
29
+ "sampling_rate": 16000,
30
+ "temporal_patch_size": 2
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|AUDIO|>",
6
+ "<|audio_bos|>",
7
+ "<|audio_eos|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_bos|>",
12
+ "<|vision_eos|>",
13
+ "<|vision_pad|>",
14
+ "<|IMAGE|>",
15
+ "<|VIDEO|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
spk_dict.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a05609b28f5d42b7b748f0f07592545c8f1f6885b9ae8fff64baf56e86b2a18
3
+ size 259544
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8441917e39ae0244e06d704b95b3124795cec478e297f9afac39ba670d7e9d99
3
+ size 11421870
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|AUDIO|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|audio_bos|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|audio_eos|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_bos|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_eos|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|IMAGE|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|VIDEO|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ }
180
+ },
181
+ "additional_special_tokens": [
182
+ "<|im_start|>",
183
+ "<|im_end|>",
184
+ "<|AUDIO|>",
185
+ "<|audio_bos|>",
186
+ "<|audio_eos|>",
187
+ "<|box_end|>",
188
+ "<|quad_start|>",
189
+ "<|quad_end|>",
190
+ "<|vision_bos|>",
191
+ "<|vision_eos|>",
192
+ "<|vision_pad|>",
193
+ "<|IMAGE|>",
194
+ "<|VIDEO|>"
195
+ ],
196
+ "bos_token": null,
197
+ "chat_template": "{% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "processor_class": "Qwen2_5OmniProcessor",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff