--- base_model: cognitivecomputations/Dolphin3.0-Llama3.1-8B datasets: - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en license: llama3.1 tags: - llama-cpp - gguf-my-repo model-index: - name: Dolphin3.0-Llama3.1-8B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 76.21 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 27.63 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 10.5 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 4.36 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.97 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 22.13 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=cognitivecomputations%2FDolphin3.0-Llama3.1-8B name: Open LLM Leaderboard --- # DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`cognitivecomputations/Dolphin3.0-Llama3.1-8B`](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -c 2048 ```