Raj411 commited on
Commit
2f71850
·
verified ·
1 Parent(s): 01d6291

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - sentiment-classification
5
+ - telugu
6
+ - bert
7
+ - l3cube
8
+ - baseline
9
+ language: te
10
+ datasets:
11
+ - DSL-13-SRMAP/TeSent_Benchmark-Dataset
12
+ model_name: Telugu-BERT_WOR
13
+ ---
14
+
15
+ # Telugu-BERT_WOR: L3Cube-Telugu-BERT Telugu Sentiment Classification Model (Without Rationale)
16
+
17
+ ## Model Overview
18
+
19
+ **Telugu-BERT_WOR** is a Telugu sentiment classification model based on **L3Cube-Telugu-BERT**, a transformer-based BERT model pre-trained specifically on Telugu text (Telugu OSCAR, Wikipedia, news) by the L3Cube Pune research group for Masked Language Modeling (MLM).
20
+ "WOR" in the model name stands for "**Without Rationale**", meaning this model is trained only with sentiment labels from the TeSent_Benchmark-Dataset and **does not use human-annotated rationales**.
21
+
22
+ ---
23
+
24
+ ## Model Details
25
+
26
+ - **Architecture:** L3Cube-Telugu-BERT (BERT-base, pre-trained on Telugu)
27
+ - **Pretraining Data:** Telugu OSCAR, Wikipedia, and news articles
28
+ - **Pretraining Objective:** Masked Language Modeling (MLM)
29
+ - **Fine-tuning Data:** [TeSent_Benchmark-Dataset](https://huggingface.co/datasets/dsl-13-srmap/tesent_benchmark-dataset), using only sentence-level sentiment labels (positive, negative, neutral); rationale annotations are disregarded
30
+ - **Task:** Sentence-level sentiment classification (3-way)
31
+ - **Rationale Usage:** **Not used** during training or inference ("WOR" = Without Rationale)
32
+
33
+ ---
34
+
35
+ ## Intended Use
36
+
37
+ - **Primary Use:** Benchmarking Telugu sentiment classification on the TeSent_Benchmark-Dataset, especially as a **baseline** for models trained without rationales
38
+ - **Research Setting:** Ideal for researchers working on pure Telugu text analysis with sufficient labeled data for fine-tuning
39
+
40
+ ---
41
+
42
+ ## Why Telugu-BERT?
43
+
44
+ Telugu-BERT is tailored for Telugu and excels in capturing the vocabulary, syntax, and semantics of the language. It recognizes nuanced expressions, idioms, and sentiments that are often poorly represented in multilingual models like mBERT and XLM-R.
45
+ This makes Telugu-BERT_WOR an excellent choice for sentiment analysis tasks and other Telugu NLP applications requiring strong language-specific representation.
46
+
47
+ ---
48
+
49
+ ## Performance and Limitations
50
+
51
+ **Strengths:**
52
+ - Superior understanding of Telugu language specifics compared to multilingual models
53
+ - Capable of capturing nuanced and idiomatic expressions in sentiment analysis
54
+ - Robust baseline for Telugu sentiment classification tasks
55
+
56
+ **Limitations:**
57
+ - Applicability limited to Telugu; not suitable for multilingual or cross-lingual tasks
58
+ - Requires sufficient labeled Telugu data for best performance
59
+ - Since rationales are not used, the model cannot provide explicit explanations for its predictions
60
+
61
+ ---
62
+
63
+ ## Training Data
64
+
65
+ - **Dataset:** [TeSent_Benchmark-Dataset](https://huggingface.co/datasets/dsl-13-srmap/tesent_benchmark-dataset)
66
+ - **Data Used:** Only the **Content** (Telugu sentence) and **Label** (sentiment label) columns; **rationale** annotations are ignored for Telugu-BERT_WOR training
67
+
68
+ ---
69
+
70
+ ## Language Coverage
71
+
72
+ - **Language:** Telugu (`te`)
73
+ - **Model Scope:** This implementation and evaluation focus strictly on Telugu sentiment classification
74
+
75
+ ---
76
+
77
+ ## Citation and More Details
78
+
79
+ For detailed experimental setup, evaluation metrics, and comparisons with rationale-based models, **please refer to our paper**.
80
+
81
+
82
+
83
+ ---
84
+
85
+ ## License
86
+
87
+ Released under [CC BY 4.0](LICENSE).