DOOGLAK commited on
Commit
a452409
·
1 Parent(s): 443d187

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - article250v8_wikigold_split
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: Article_250v8_NER_Model_3Epochs_UNAUGMENTED
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: article250v8_wikigold_split
20
+ type: article250v8_wikigold_split
21
+ args: default
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.4215600350569676
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.3990597345132743
29
+ - name: F1
30
+ type: f1
31
+ value: 0.4100014206563432
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.878173617797598
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # Article_250v8_NER_Model_3Epochs_UNAUGMENTED
41
+
42
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v8_wikigold_split dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.3329
45
+ - Precision: 0.4216
46
+ - Recall: 0.3991
47
+ - F1: 0.4100
48
+ - Accuracy: 0.8782
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 8
69
+ - eval_batch_size: 8
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 1.0 | 28 | 0.5293 | 0.1767 | 0.0454 | 0.0722 | 0.7988 |
80
+ | No log | 2.0 | 56 | 0.3589 | 0.3246 | 0.2987 | 0.3111 | 0.8611 |
81
+ | No log | 3.0 | 84 | 0.3329 | 0.4216 | 0.3991 | 0.4100 | 0.8782 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.17.0
87
+ - Pytorch 1.11.0+cu113
88
+ - Datasets 2.4.0
89
+ - Tokenizers 0.11.6