| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a | 
					
					
						
						| 
							 | 
						text file or a dataset. | 
					
					
						
						| 
							 | 
						Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | 
					
					
						
						| 
							 | 
						https://huggingface.co/models?filter=masked-lm | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						import time | 
					
					
						
						| 
							 | 
						from collections import defaultdict | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass, field | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						from typing import Dict, List, Optional, Tuple | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from datasets import load_dataset, interleave_datasets | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import flax | 
					
					
						
						| 
							 | 
						import jax | 
					
					
						
						| 
							 | 
						import jax.numpy as jnp | 
					
					
						
						| 
							 | 
						import optax | 
					
					
						
						| 
							 | 
						from flax import jax_utils, traverse_util | 
					
					
						
						| 
							 | 
						from flax.training import train_state | 
					
					
						
						| 
							 | 
						from flax.training.common_utils import get_metrics, onehot, shard | 
					
					
						
						| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    CONFIG_MAPPING, | 
					
					
						
						| 
							 | 
						    FLAX_MODEL_FOR_MASKED_LM_MAPPING, | 
					
					
						
						| 
							 | 
						    AutoConfig, | 
					
					
						
						| 
							 | 
						    AutoTokenizer, | 
					
					
						
						| 
							 | 
						    FlaxAutoModelForMaskedLM, | 
					
					
						
						| 
							 | 
						    HfArgumentParser, | 
					
					
						
						| 
							 | 
						    PreTrainedTokenizerBase, | 
					
					
						
						| 
							 | 
						    TensorType, | 
					
					
						
						| 
							 | 
						    TrainingArguments, | 
					
					
						
						| 
							 | 
						    is_tensorboard_available, | 
					
					
						
						| 
							 | 
						    set_seed, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if datasets.__version__ <= "1.8.0": | 
					
					
						
						| 
							 | 
						    raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) | 
					
					
						
						| 
							 | 
						MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class ModelArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_name_or_path: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The model checkpoint for weights initialization." | 
					
					
						
						| 
							 | 
						            "Don't set if you want to train a model from scratch." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    model_type: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    config_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    tokenizer_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    cache_dir: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    use_fast_tokenizer: bool = field( | 
					
					
						
						| 
							 | 
						        default=True, | 
					
					
						
						| 
							 | 
						        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    dtype: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="float32", | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class DataTrainingArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to what data we are going to input our model for training and eval. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    dataset_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    dataset_config_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | 
					
					
						
						| 
							 | 
						    validation_file: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    train_ref_file: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    validation_ref_file: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    overwrite_cache: bool = field( | 
					
					
						
						| 
							 | 
						        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    validation_split_percentage: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=5, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The percentage of the train set used as validation set in case there's no validation split" | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_seq_length: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The maximum total input sequence length after tokenization. Sequences longer " | 
					
					
						
						| 
							 | 
						            "than this will be truncated. Default to the max input length of the model." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    preprocessing_num_workers: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "The number of processes to use for the preprocessing."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    mlm_probability: float = field( | 
					
					
						
						| 
							 | 
						        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    pad_to_max_length: bool = field( | 
					
					
						
						| 
							 | 
						        default=False, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "Whether to pad all samples to `max_seq_length`. " | 
					
					
						
						| 
							 | 
						            "If False, will pad the samples dynamically when batching to the maximum length in the batch." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    line_by_line: bool = field( | 
					
					
						
						| 
							 | 
						        default=False, | 
					
					
						
						| 
							 | 
						        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    text_column_name: str = field( | 
					
					
						
						| 
							 | 
						        default="text", metadata={"help": "The name of the column to retrieve the training text."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    shuffle_buffer_size: int = field( | 
					
					
						
						| 
							 | 
						        default=10000, metadata={"help": "The number of examples to pre-load for shuffling."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."}) | 
					
					
						
						| 
							 | 
						    num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __post_init__(self): | 
					
					
						
						| 
							 | 
						        if self.dataset_name is None and self.train_file is None and self.validation_file is None: | 
					
					
						
						| 
							 | 
						            raise ValueError("Need either a dataset name or a training/validation file.") | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if self.train_file is not None: | 
					
					
						
						| 
							 | 
						                extension = self.train_file.split(".")[-1] | 
					
					
						
						| 
							 | 
						                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | 
					
					
						
						| 
							 | 
						            if self.validation_file is not None: | 
					
					
						
						| 
							 | 
						                extension = self.validation_file.split(".")[-1] | 
					
					
						
						| 
							 | 
						                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@flax.struct.dataclass | 
					
					
						
						| 
							 | 
						class FlaxDataCollatorForLanguageModeling: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they | 
					
					
						
						| 
							 | 
						    are not all of the same length. | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): | 
					
					
						
						| 
							 | 
						            The tokenizer used for encoding the data. | 
					
					
						
						| 
							 | 
						        mlm_probability (:obj:`float`, `optional`, defaults to 0.15): | 
					
					
						
						| 
							 | 
						            The probability with which to (randomly) mask tokens in the input. | 
					
					
						
						| 
							 | 
						    .. note:: | 
					
					
						
						| 
							 | 
						        For best performance, this data collator should be used with a dataset having items that are dictionaries or | 
					
					
						
						| 
							 | 
						        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a | 
					
					
						
						| 
							 | 
						        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the | 
					
					
						
						| 
							 | 
						        argument :obj:`return_special_tokens_mask=True`. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    tokenizer: PreTrainedTokenizerBase | 
					
					
						
						| 
							 | 
						    mlm_probability: float = 0.15 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __post_init__(self): | 
					
					
						
						| 
							 | 
						        if self.tokenizer.mask_token is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "This tokenizer does not have a mask token which is necessary for masked language modeling. " | 
					
					
						
						| 
							 | 
						                "You should pass `mlm=False` to train on causal language modeling instead." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        special_tokens_mask = batch.pop("special_tokens_mask", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch["input_ids"], batch["labels"] = self.mask_tokens( | 
					
					
						
						| 
							 | 
						            batch["input_ids"], special_tokens_mask=special_tokens_mask | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return batch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def mask_tokens( | 
					
					
						
						| 
							 | 
						        self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] | 
					
					
						
						| 
							 | 
						    ) -> Tuple[jnp.ndarray, jnp.ndarray]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        labels = inputs.copy() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        probability_matrix = np.full(labels.shape, self.mlm_probability) | 
					
					
						
						| 
							 | 
						        special_tokens_mask = special_tokens_mask.astype("bool") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        probability_matrix[special_tokens_mask] = 0.0 | 
					
					
						
						| 
							 | 
						        masked_indices = np.random.binomial(1, probability_matrix).astype("bool") | 
					
					
						
						| 
							 | 
						        labels[~masked_indices] = -100   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices | 
					
					
						
						| 
							 | 
						        inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") | 
					
					
						
						| 
							 | 
						        indices_random &= masked_indices & ~indices_replaced | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") | 
					
					
						
						| 
							 | 
						        inputs[indices_random] = random_words[indices_random] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        return inputs, labels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: | 
					
					
						
						| 
							 | 
						    num_samples = len(samples_idx) | 
					
					
						
						| 
							 | 
						    samples_to_remove = num_samples % batch_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if samples_to_remove != 0: | 
					
					
						
						| 
							 | 
						        samples_idx = samples_idx[:-samples_to_remove] | 
					
					
						
						| 
							 | 
						    sections_split = num_samples // batch_size | 
					
					
						
						| 
							 | 
						    batch_idx = np.split(samples_idx, sections_split) | 
					
					
						
						| 
							 | 
						    return batch_idx | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The training iterator is advanced so that after groupifying the samples, | 
					
					
						
						| 
							 | 
						    `num_samples` of length `max_seq_length` are returned. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    num_total_tokens = max_seq_length * num_samples | 
					
					
						
						| 
							 | 
						    samples = defaultdict(list) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    i = 0 | 
					
					
						
						| 
							 | 
						    while i < num_total_tokens: | 
					
					
						
						| 
							 | 
						        tokenized_samples = next(train_iterator) | 
					
					
						
						| 
							 | 
						        i += len(tokenized_samples["input_ids"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def group_texts(examples): | 
					
					
						
						| 
							 | 
						        result = { | 
					
					
						
						| 
							 | 
						            k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)] | 
					
					
						
						| 
							 | 
						            for k, t in examples.items() | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        return result | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    grouped_samples = group_texts(samples) | 
					
					
						
						| 
							 | 
						    return grouped_samples | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def write_train_metric(summary_writer, train_metrics, train_time, step): | 
					
					
						
						| 
							 | 
						    summary_writer.scalar("train_time", train_time, step) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    train_metrics = get_metrics(train_metrics) | 
					
					
						
						| 
							 | 
						    for key, vals in train_metrics.items(): | 
					
					
						
						| 
							 | 
						        tag = f"train_{key}" | 
					
					
						
						| 
							 | 
						        for i, val in enumerate(vals): | 
					
					
						
						| 
							 | 
						            summary_writer.scalar(tag, val, step - len(vals) + i + 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def write_eval_metric(summary_writer, eval_metrics, step): | 
					
					
						
						| 
							 | 
						    for metric_name, value in eval_metrics.items(): | 
					
					
						
						| 
							 | 
						        summary_writer.scalar(f"eval_{metric_name}", value, step) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | 
					
					
						
						| 
							 | 
						    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if ( | 
					
					
						
						| 
							 | 
						        os.path.exists(training_args.output_dir) | 
					
					
						
						| 
							 | 
						        and os.listdir(training_args.output_dir) | 
					
					
						
						| 
							 | 
						        and training_args.do_train | 
					
					
						
						| 
							 | 
						        and not training_args.overwrite_output_dir | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"Output directory ({training_args.output_dir}) already exists and is not empty." | 
					
					
						
						| 
							 | 
						            "Use --overwrite_output_dir to overcome." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logging.basicConfig( | 
					
					
						
						| 
							 | 
						        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
					
						
						| 
							 | 
						        level="INFO", | 
					
					
						
						| 
							 | 
						        datefmt="[%X]", | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logger = logging.getLogger(__name__) | 
					
					
						
						| 
							 | 
						    logger.warning( | 
					
					
						
						| 
							 | 
						        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | 
					
					
						
						| 
							 | 
						        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logger.info(f"Training/evaluation parameters {training_args}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    set_seed(training_args.seed) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if data_args.dataset_name is not None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dataset = load_dataset("mc4", "da", split="train", streaming=True) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if model_args.config_name: | 
					
					
						
						| 
							 | 
						        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) | 
					
					
						
						| 
							 | 
						    elif model_args.model_name_or_path: | 
					
					
						
						| 
							 | 
						        print(f"Setting config from path: {model_args.model_name_or_path}") | 
					
					
						
						| 
							 | 
						        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        config = CONFIG_MAPPING[model_args.model_type]() | 
					
					
						
						| 
							 | 
						        logger.warning("You are instantiating a new config instance from scratch.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if model_args.tokenizer_name: | 
					
					
						
						| 
							 | 
						        tokenizer = AutoTokenizer.from_pretrained( | 
					
					
						
						| 
							 | 
						            model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    elif model_args.model_name_or_path: | 
					
					
						
						| 
							 | 
						        tokenizer = AutoTokenizer.from_pretrained( | 
					
					
						
						| 
							 | 
						            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            "You are instantiating a new tokenizer from scratch. This is not supported by this script." | 
					
					
						
						| 
							 | 
						            "You can do it from another script, save it, and load it from here, using --tokenizer_name." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def tokenize_function(examples): | 
					
					
						
						| 
							 | 
						        return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    tokenized_datasets = dataset.map( | 
					
					
						
						| 
							 | 
						        tokenize_function, | 
					
					
						
						| 
							 | 
						        batched=True, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    shuffle_seed = training_args.seed | 
					
					
						
						| 
							 | 
						    tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    has_tensorboard = is_tensorboard_available() | 
					
					
						
						| 
							 | 
						    if has_tensorboard and jax.process_index() == 0: | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            from flax.metrics.tensorboard import SummaryWriter | 
					
					
						
						| 
							 | 
						        except ImportError as ie: | 
					
					
						
						| 
							 | 
						            has_tensorboard = False | 
					
					
						
						| 
							 | 
						            logger.warning( | 
					
					
						
						| 
							 | 
						                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    rng = jax.random.PRNGKey(training_args.seed) | 
					
					
						
						| 
							 | 
						    dropout_rngs = jax.random.split(rng, jax.local_device_count()) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if model_args.model_name_or_path: | 
					
					
						
						| 
							 | 
						        model = FlaxAutoModelForMaskedLM.from_pretrained( | 
					
					
						
						| 
							 | 
						            model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        model = FlaxAutoModelForMaskedLM.from_config( | 
					
					
						
						| 
							 | 
						            config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    num_epochs = int(training_args.num_train_epochs) | 
					
					
						
						| 
							 | 
						    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | 
					
					
						
						| 
							 | 
						    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    num_train_steps = data_args.num_train_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    warmup_fn = optax.linear_schedule( | 
					
					
						
						| 
							 | 
						        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    decay_fn = optax.linear_schedule( | 
					
					
						
						| 
							 | 
						        init_value=training_args.learning_rate, | 
					
					
						
						| 
							 | 
						        end_value=0, | 
					
					
						
						| 
							 | 
						        transition_steps=num_train_steps - training_args.warmup_steps, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    linear_decay_lr_schedule_fn = optax.join_schedules( | 
					
					
						
						| 
							 | 
						        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def decay_mask_fn(params): | 
					
					
						
						| 
							 | 
						        flat_params = traverse_util.flatten_dict(params) | 
					
					
						
						| 
							 | 
						        flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} | 
					
					
						
						| 
							 | 
						        return traverse_util.unflatten_dict(flat_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    adamw = optax.adamw( | 
					
					
						
						| 
							 | 
						        learning_rate=linear_decay_lr_schedule_fn, | 
					
					
						
						| 
							 | 
						        b1=training_args.adam_beta1, | 
					
					
						
						| 
							 | 
						        b2=training_args.adam_beta2, | 
					
					
						
						| 
							 | 
						        eps=training_args.adam_epsilon, | 
					
					
						
						| 
							 | 
						        weight_decay=training_args.weight_decay, | 
					
					
						
						| 
							 | 
						        mask=decay_mask_fn, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def train_step(state, batch, dropout_rng): | 
					
					
						
						| 
							 | 
						        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def loss_fn(params): | 
					
					
						
						| 
							 | 
						            labels = batch.pop("labels") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            label_mask = jnp.where(labels > 0, 1.0, 0.0) | 
					
					
						
						| 
							 | 
						            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss = loss.sum() / label_mask.sum() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            return loss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        grad_fn = jax.value_and_grad(loss_fn) | 
					
					
						
						| 
							 | 
						        loss, grad = grad_fn(state.params) | 
					
					
						
						| 
							 | 
						        grad = jax.lax.pmean(grad, "batch") | 
					
					
						
						| 
							 | 
						        new_state = state.apply_gradients(grads=grad) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        metrics = jax.lax.pmean( | 
					
					
						
						| 
							 | 
						            {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return new_state, metrics, new_dropout_rng | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def eval_step(params, batch): | 
					
					
						
						| 
							 | 
						        labels = batch.pop("labels") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logits = model(**batch, params=params, train=False)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        label_mask = jnp.where(labels > 0, 1.0, 0.0) | 
					
					
						
						| 
							 | 
						        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} | 
					
					
						
						| 
							 | 
						        metrics = jax.lax.psum(metrics, axis_name="batch") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return metrics | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    state = jax_utils.replicate(state) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    train_time = 0 | 
					
					
						
						| 
							 | 
						    train_start = time.time() | 
					
					
						
						| 
							 | 
						    train_metrics = [] | 
					
					
						
						| 
							 | 
						    eval_metrics = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    training_iter = iter(tokenized_datasets) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | 
					
					
						
						| 
							 | 
						    eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    steps = tqdm(range(num_train_steps), desc="Training...", position=0) | 
					
					
						
						| 
							 | 
						    for step in range(num_train_steps): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length) | 
					
					
						
						| 
							 | 
						        except StopIteration: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shuffle_seed += 1 | 
					
					
						
						| 
							 | 
						            tokenized_datasets.set_epoch(shuffle_seed) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            training_iter = iter(tokenized_datasets) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length) | 
					
					
						
						| 
							 | 
						            samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model_inputs = data_collator(samples) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model_inputs = shard(model_inputs.data) | 
					
					
						
						| 
							 | 
						        state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        train_metrics.append(train_metric) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if step % training_args.logging_steps == 0 and step > 0: | 
					
					
						
						| 
							 | 
						            steps.write( | 
					
					
						
						| 
							 | 
						                f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            train_time += time.time() - train_start | 
					
					
						
						| 
							 | 
						            if has_tensorboard and jax.process_index() == 0: | 
					
					
						
						| 
							 | 
						                write_train_metric(summary_writer, train_metrics, train_time, step) | 
					
					
						
						| 
							 | 
						            train_metrics = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if step % training_args.eval_steps == 0 and step > 0: | 
					
					
						
						| 
							 | 
						            eval_samples_idx = jnp.arange(data_args.num_eval_samples) | 
					
					
						
						| 
							 | 
						            eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()} | 
					
					
						
						| 
							 | 
						                model_inputs = data_collator(batch_eval_samples) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                model_inputs = shard(model_inputs.data) | 
					
					
						
						| 
							 | 
						                metrics = p_eval_step(state.params, model_inputs) | 
					
					
						
						| 
							 | 
						                eval_metrics.append(metrics) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            eval_metrics = get_metrics(eval_metrics) | 
					
					
						
						| 
							 | 
						            eval_metrics = jax.tree_map(jnp.sum, eval_metrics) | 
					
					
						
						| 
							 | 
						            eval_normalizer = eval_metrics.pop("normalizer") | 
					
					
						
						| 
							 | 
						            eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if has_tensorboard and jax.process_index() == 0: | 
					
					
						
						| 
							 | 
						                write_eval_metric(summary_writer, eval_metrics, step) | 
					
					
						
						| 
							 | 
						            eval_metrics = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if step % training_args.save_steps == 0 and step > 0: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if jax.process_index() == 0: | 
					
					
						
						| 
							 | 
						                    params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | 
					
					
						
						| 
							 | 
						                    model.save_pretrained( | 
					
					
						
						| 
							 | 
						                        training_args.output_dir, | 
					
					
						
						| 
							 | 
						                        params=params, | 
					
					
						
						| 
							 | 
						                        push_to_hub=training_args.push_to_hub, | 
					
					
						
						| 
							 | 
						                        commit_message=f"Saving weights and logs of step {step+1}", | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        steps.update(1) | 
					
					
						
						| 
							 | 
						
 |