Add PPO model for LunarLander-v2 v2
Browse files- .gitattributes +1 -0
- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df6b5a6f70a92dc5f59ee964b9efd27f24681b9eff4c2bda8d2a66be87354f79
|
3 |
+
size 144042
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb704ca6f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb704c2f050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb704c2f0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb704c2f170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb704c2f200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb704c2f290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb704c2f320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb704c2f3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb704c2f440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb704c2f4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb704c2f560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb704c70c00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651674468.6962564,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Qvz2bABI/rHovPVJU7r62er89yr6ivQAAAAAAAAAAAATvPMhctj9uNfI+RERMPWi3tLysBUQ7AAAAAAAAAAAa6m29p1RQP57qwb0H/AC/qjMgOf1RJzwAAAAAAAAAAHMqAb5SKKE6ql4NPhWiNLxEz4y8xCYgPQAAAAAAAIA/JryVPlFcUr05Kqw8b5U9u0vitL6nIQe8AACAPwAAgD/mc4k9JzOWPqJU5LxUsjK+mm0+PLap1jwAAAAAAAAAALDr1z6IP6G82qkXPst0lLw3S1W+D7GNvQAAgD8AAIA/uh2wPjO5+j6pK549qn7avqosGT5wa629AAAAAAAAAADeRcG+ZNcaP72iLL56kAq/0g0dvspmmb0AAAAAAAAAAM0NubyF4525eRoANBGa6i8OLpM675vCswAAgD8AAIA/1hTNvnq4bj6GP8Q9En6dvnz+gr1BzA29AAAAAAAAAADa24+94YCUum8wJLyzInA7tmh/ObvjHrwAAAAAAAAAAMDAUT5uv8S80AX0PfHCZryWmTG+lyAzvQAAgD8AAIA/s/cdvidIMj/7anK+4l8evwE1NL2i9gi9AAAAAAAAAAAA7WE96DNUP91R9z1SfzK/ZHqwPZFRAz0AAAAAAAAAAObkIj5o5IA/ou4fPofLJL8fYLk9sAn+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbOo8Kv4rbUCUhpRSlIwBbJRL7owBdJRHQKcMawRoRI11fZQoaAZoCWgPQwgNGY9Sid5nQJSGlFKUaBVNnwFoFkdApwzhxo7FKnV9lChoBmgJaA9DCGcng6OkPXFAlIaUUpRoFU0AAWgWR0CnDXOw5eZ5dX2UKGgGaAloD0MIFJZ4QNlEEMCUhpRSlGgVS3poFkdApw1z5mAbynV9lChoBmgJaA9DCFbSim+oXWxAlIaUUpRoFUv+aBZHQKcOC7/XGwR1fZQoaAZoCWgPQwg6kzZV96dvQJSGlFKUaBVL1WgWR0CnDhmu9vjwdX2UKGgGaAloD0MI6bmFroTHcECUhpRSlGgVTU8BaBZHQKcOM15Sm651fZQoaAZoCWgPQwhjmulep7RsQJSGlFKUaBVNIgJoFkdApw5f4Glhw3V9lChoBmgJaA9DCNj0oKCUgm5AlIaUUpRoFUvNaBZHQKcPAA7xNIt1fZQoaAZoCWgPQwgmUS/4NDcQQJSGlFKUaBVLZGgWR0CnD13d9Dx9dX2UKGgGaAloD0MIQUXVr3RLcUCUhpRSlGgVS+loFkdApw/Xci4axXV9lChoBmgJaA9DCALWql2TS3BAlIaUUpRoFUvfaBZHQKcP8rqdH2B1fZQoaAZoCWgPQwhbIhecwR1DQJSGlFKUaBVLymgWR0CnEDhKtga4dX2UKGgGaAloD0MI+8kYH2bZRkCUhpRSlGgVS7loFkdApxB6mQ8wH3V9lChoBmgJaA9DCFmGONZFdHBAlIaUUpRoFU0NAWgWR0CnEPSvLX+VdX2UKGgGaAloD0MIGESkph18cECUhpRSlGgVS7NoFkdApxH5mukk8nV9lChoBmgJaA9DCELqdvZVFnFAlIaUUpRoFU0DAWgWR0CnEsHc+JP7dX2UKGgGaAloD0MIEynN5nECbkCUhpRSlGgVS+RoFkdApxLJceKba3V9lChoBmgJaA9DCFyRmKAGOm9AlIaUUpRoFUvmaBZHQKcS9t0FKTV1fZQoaAZoCWgPQwg7AU2EjdBuQJSGlFKUaBVNBwFoFkdApxODLr5ZbXV9lChoBmgJaA9DCJwaaD7ne25AlIaUUpRoFUvuaBZHQKcUIlk6Lfl1fZQoaAZoCWgPQwixv+yePE1TQJSGlFKUaBVN6ANoFkdApxR6OmzjWHV9lChoBmgJaA9DCNZUFoXd4m5AlIaUUpRoFUvbaBZHQKcUo7rcCYF1fZQoaAZoCWgPQwgG9S1zOlVqQJSGlFKUaBVNjwFoFkdApxSzneSB9XV9lChoBmgJaA9DCLWJk/tdIHBAlIaUUpRoFUvvaBZHQKcVH2criER1fZQoaAZoCWgPQwjOxd/2hCdxQJSGlFKUaBVNDQFoFkdApxUo482aUnV9lChoBmgJaA9DCMGtu3kq8G5AlIaUUpRoFUvZaBZHQKcVo3azu4R1fZQoaAZoCWgPQwgP7zmw3DxwQJSGlFKUaBVNGAFoFkdApxYc6eXiSHV9lChoBmgJaA9DCJ2DZ0JTrXBAlIaUUpRoFUv5aBZHQKcXON3GGVR1fZQoaAZoCWgPQwiT/fM0IGRxQJSGlFKUaBVL4WgWR0CnF5mTLW7OdX2UKGgGaAloD0MInIwqwzh8c0CUhpRSlGgVTRgBaBZHQKcYrIJ7b+N1fZQoaAZoCWgPQwh2+6wyk6FxQJSGlFKUaBVL3mgWR0CnGLkytV7ydX2UKGgGaAloD0MICqAYWbIbb0CUhpRSlGgVS8hoFkdApxi/GGVRk3V9lChoBmgJaA9DCMVYpl+iRGtAlIaUUpRoFU2qAmgWR0CnGgvV/c33dX2UKGgGaAloD0MIvk7qy9IuD8CUhpRSlGgVS+hoFkdApxoYScslLXV9lChoBmgJaA9DCN/DJcedUhZAlIaUUpRoFUvNaBZHQKcaJA+IM0B1fZQoaAZoCWgPQwjt1jIZjl5tQJSGlFKUaBVNXgFoFkdApxpZXlr/KnV9lChoBmgJaA9DCEvJchLKf2FAlIaUUpRoFU3aAWgWR0CnGr2MCLdfdX2UKGgGaAloD0MIuCBbli/pcUCUhpRSlGgVTS0BaBZHQKcbEbedkJ91fZQoaAZoCWgPQwgBomDG1L9yQJSGlFKUaBVNawFoFkdApxtCF23az3V9lChoBmgJaA9DCE3YfjLGzm1AlIaUUpRoFUvraBZHQKcbR8XvYvp1fZQoaAZoCWgPQwgRje4g9h5zQJSGlFKUaBVNUgFoFkdApxuITwlSj3V9lChoBmgJaA9DCITTghc9AnFAlIaUUpRoFUv3aBZHQKcca6Ae7tl1fZQoaAZoCWgPQwjeyhKdZTVwQJSGlFKUaBVL/GgWR0CnHNWZJCjUdX2UKGgGaAloD0MIFeP8TSiGQkCUhpRSlGgVS81oFkdApxzbwSamXXV9lChoBmgJaA9DCGMOgo5WlTJAlIaUUpRoFUucaBZHQKcdB+n62v11fZQoaAZoCWgPQwi3XWiukwFyQJSGlFKUaBVL3GgWR0CnHkiGvfTDdX2UKGgGaAloD0MImpfD7jtVcECUhpRSlGgVTQUBaBZHQKcfF08vEjx1fZQoaAZoCWgPQwjJAiZw68JeQJSGlFKUaBVN6ANoFkdApx9arvLHMnV9lChoBmgJaA9DCIOKql/pmHBAlIaUUpRoFU0FAWgWR0CnH2DcEeQudX2UKGgGaAloD0MI/67PnPXBb0CUhpRSlGgVS/toFkdApyAUZzgdfnV9lChoBmgJaA9DCIdsIF1sMXBAlIaUUpRoFU0EAWgWR0CnIEcfeUILdX2UKGgGaAloD0MI0LcFS/W0ckCUhpRSlGgVS+xoFkdApyEeXXyy2XV9lChoBmgJaA9DCG+5+rEJ8HFAlIaUUpRoFU0mAWgWR0CnIUo+nqFAdX2UKGgGaAloD0MISMX/HdE2bUCUhpRSlGgVTV0BaBZHQKchh4vexfR1fZQoaAZoCWgPQwgTRrOyfUxwQJSGlFKUaBVNTAFoFkdApyGHtv4ub3V9lChoBmgJaA9DCGoWaHdIk29AlIaUUpRoFUvraBZHQKchlhvze411fZQoaAZoCWgPQwisyVNWU2VxQJSGlFKUaBVNBQFoFkdApyI3Vf/m1nV9lChoBmgJaA9DCFCOAkTBT1bAlIaUUpRoFU3rAWgWR0CnIorbpNbkdX2UKGgGaAloD0MIAALWql3/QkCUhpRSlGgVS7RoFkdApyKkQf6oEXV9lChoBmgJaA9DCF8JpMSuAW9AlIaUUpRoFU0vAWgWR0CnIs1w5vLpdX2UKGgGaAloD0MIUmLX9va1a0CUhpRSlGgVTQMCaBZHQKci6A3kxRF1fZQoaAZoCWgPQwivB5Pi4/VuQJSGlFKUaBVL7WgWR0CnJH2M85jpdX2UKGgGaAloD0MIJo+n5QcmNUCUhpRSlGgVS79oFkdApySbf779AHV9lChoBmgJaA9DCGACt+5mpHFAlIaUUpRoFU00AWgWR0CnJSNKh+OPdX2UKGgGaAloD0MI9YHknUPbcECUhpRSlGgVS9VoFkdApyUndIoVmHV9lChoBmgJaA9DCM1aCki7/3FAlIaUUpRoFU04AWgWR0CnJTn9m6GydX2UKGgGaAloD0MICHdn7fbYcUCUhpRSlGgVTWoBaBZHQKclOfe1rqN1fZQoaAZoCWgPQwh4exACsltxQJSGlFKUaBVNDgFoFkdApyVI4bS7XnV9lChoBmgJaA9DCKyQ8pPqnHFAlIaUUpRoFUuyaBZHQKcmEW2w3YN1fZQoaAZoCWgPQwgDJQUWwHNuQJSGlFKUaBVL/2gWR0CnJhZmZmZmdX2UKGgGaAloD0MIKbFre/vYcECUhpRSlGgVS81oFkdApyZFE7W/anV9lChoBmgJaA9DCMfUXdnFE3FAlIaUUpRoFUvsaBZHQKcmalFc6eZ1fZQoaAZoCWgPQwgpzeZxmPlvQJSGlFKUaBVNGQFoFkdApyaXs7dSEXV9lChoBmgJaA9DCJxpwvaTtGxAlIaUUpRoFU2/A2gWR0CnJ8oHcDbKdX2UKGgGaAloD0MIH0lJD0NvNkCUhpRSlGgVS5ZoFkdApyfkOkLx7XV9lChoBmgJaA9DCKWFyyrsm3JAlIaUUpRoFU0yAWgWR0CnJ/+RgZ0kdX2UKGgGaAloD0MIlphnJS32bkCUhpRSlGgVS9toFkdApyiSZQYUFnV9lChoBmgJaA9DCDGale1DsW5AlIaUUpRoFU1DAWgWR0CnKJ+HBUJfdX2UKGgGaAloD0MIMC/APvq1ckCUhpRSlGgVTaIBaBZHQKcpHFDv3Jx1fZQoaAZoCWgPQwifkJ23saRtQJSGlFKUaBVL6mgWR0CnKW/L1VYIdX2UKGgGaAloD0MIKzBkdavcbUCUhpRSlGgVTRQBaBZHQKcpjK8tf5V1fZQoaAZoCWgPQwi2ateENMlxQJSGlFKUaBVL8WgWR0CnKaNxVAAydX2UKGgGaAloD0MI9s5oq5KTbECUhpRSlGgVS/RoFkdApym/lQuVX3V9lChoBmgJaA9DCAbZsnwdGnFAlIaUUpRoFU0LAWgWR0CnKf2yC4BndX2UKGgGaAloD0MItB8pIsMFcUCUhpRSlGgVS9VoFkdApyn+xD9fkXV9lChoBmgJaA9DCDI7i95pC3BAlIaUUpRoFUvjaBZHQKcqWiUPhAJ1fZQoaAZoCWgPQwjAlIEDmihyQJSGlFKUaBVL2mgWR0CnKli2tuDSdX2UKGgGaAloD0MIOUVHcvmfPUCUhpRSlGgVS9loFkdApyp5hlUZN3V9lChoBmgJaA9DCPrt68B5s3NAlIaUUpRoFU0AAWgWR0CnKp0KZ2IPdX2UKGgGaAloD0MIzR/T2jRWckCUhpRSlGgVTQsBaBZHQKcsf5FgDzR1fZQoaAZoCWgPQwi6EoHq35RxQJSGlFKUaBVNEAFoFkdApyy5KUVzqHV9lChoBmgJaA9DCAoQBTNmv3BAlIaUUpRoFUvtaBZHQKctSRKYiPh1fZQoaAZoCWgPQwiK6NfWTwNJQJSGlFKUaBVLwWgWR0CnLWiMPz4DdX2UKGgGaAloD0MI8yGoGr1KLUCUhpRSlGgVS9poFkdApy16y2QXAXV9lChoBmgJaA9DCFxYN94drGxAlIaUUpRoFU0ZAWgWR0CnLZ/MGHHndX2UKGgGaAloD0MISgwCK4cqOkCUhpRSlGgVS9FoFkdApy24nH/953V9lChoBmgJaA9DCFA4u7VMFXBAlIaUUpRoFU0nAWgWR0CnLfD94u9OdX2UKGgGaAloD0MItDo5QzEycECUhpRSlGgVTVwBaBZHQKcuUOYIBzV1fZQoaAZoCWgPQwiRRZp4Ry5xQJSGlFKUaBVNJQFoFkdApy79iKBNEnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 224,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 14,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d792e59586589ea58a056a13a678f14ed691b200cfaf90c59b68ebb80cfa12c0
|
3 |
+
size 84893
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ba8e76ed597e27ec408dd63b8ab2472ae4ddf5bfa16d710a5b5abccdb48392
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 255.38 +/- 19.49
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb704ca6f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb704c2f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb704c2f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb704c2f170>", "_build": "<function ActorCriticPolicy._build at 0x7fb704c2f200>", "forward": "<function ActorCriticPolicy.forward at 0x7fb704c2f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb704c2f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb704c2f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb704c2f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb704c2f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb704c2f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb704c70c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651674468.6962564, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Qvz2bABI/rHovPVJU7r62er89yr6ivQAAAAAAAAAAAATvPMhctj9uNfI+RERMPWi3tLysBUQ7AAAAAAAAAAAa6m29p1RQP57qwb0H/AC/qjMgOf1RJzwAAAAAAAAAAHMqAb5SKKE6ql4NPhWiNLxEz4y8xCYgPQAAAAAAAIA/JryVPlFcUr05Kqw8b5U9u0vitL6nIQe8AACAPwAAgD/mc4k9JzOWPqJU5LxUsjK+mm0+PLap1jwAAAAAAAAAALDr1z6IP6G82qkXPst0lLw3S1W+D7GNvQAAgD8AAIA/uh2wPjO5+j6pK549qn7avqosGT5wa629AAAAAAAAAADeRcG+ZNcaP72iLL56kAq/0g0dvspmmb0AAAAAAAAAAM0NubyF4525eRoANBGa6i8OLpM675vCswAAgD8AAIA/1hTNvnq4bj6GP8Q9En6dvnz+gr1BzA29AAAAAAAAAADa24+94YCUum8wJLyzInA7tmh/ObvjHrwAAAAAAAAAAMDAUT5uv8S80AX0PfHCZryWmTG+lyAzvQAAgD8AAIA/s/cdvidIMj/7anK+4l8evwE1NL2i9gi9AAAAAAAAAAAA7WE96DNUP91R9z1SfzK/ZHqwPZFRAz0AAAAAAAAAAObkIj5o5IA/ou4fPofLJL8fYLk9sAn+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbOo8Kv4rbUCUhpRSlIwBbJRL7owBdJRHQKcMawRoRI11fZQoaAZoCWgPQwgNGY9Sid5nQJSGlFKUaBVNnwFoFkdApwzhxo7FKnV9lChoBmgJaA9DCGcng6OkPXFAlIaUUpRoFU0AAWgWR0CnDXOw5eZ5dX2UKGgGaAloD0MIFJZ4QNlEEMCUhpRSlGgVS3poFkdApw1z5mAbynV9lChoBmgJaA9DCFbSim+oXWxAlIaUUpRoFUv+aBZHQKcOC7/XGwR1fZQoaAZoCWgPQwg6kzZV96dvQJSGlFKUaBVL1WgWR0CnDhmu9vjwdX2UKGgGaAloD0MI6bmFroTHcECUhpRSlGgVTU8BaBZHQKcOM15Sm651fZQoaAZoCWgPQwhjmulep7RsQJSGlFKUaBVNIgJoFkdApw5f4Glhw3V9lChoBmgJaA9DCNj0oKCUgm5AlIaUUpRoFUvNaBZHQKcPAA7xNIt1fZQoaAZoCWgPQwgmUS/4NDcQQJSGlFKUaBVLZGgWR0CnD13d9Dx9dX2UKGgGaAloD0MIQUXVr3RLcUCUhpRSlGgVS+loFkdApw/Xci4axXV9lChoBmgJaA9DCALWql2TS3BAlIaUUpRoFUvfaBZHQKcP8rqdH2B1fZQoaAZoCWgPQwhbIhecwR1DQJSGlFKUaBVLymgWR0CnEDhKtga4dX2UKGgGaAloD0MI+8kYH2bZRkCUhpRSlGgVS7loFkdApxB6mQ8wH3V9lChoBmgJaA9DCFmGONZFdHBAlIaUUpRoFU0NAWgWR0CnEPSvLX+VdX2UKGgGaAloD0MIGESkph18cECUhpRSlGgVS7NoFkdApxH5mukk8nV9lChoBmgJaA9DCELqdvZVFnFAlIaUUpRoFU0DAWgWR0CnEsHc+JP7dX2UKGgGaAloD0MIEynN5nECbkCUhpRSlGgVS+RoFkdApxLJceKba3V9lChoBmgJaA9DCFyRmKAGOm9AlIaUUpRoFUvmaBZHQKcS9t0FKTV1fZQoaAZoCWgPQwg7AU2EjdBuQJSGlFKUaBVNBwFoFkdApxODLr5ZbXV9lChoBmgJaA9DCJwaaD7ne25AlIaUUpRoFUvuaBZHQKcUIlk6Lfl1fZQoaAZoCWgPQwixv+yePE1TQJSGlFKUaBVN6ANoFkdApxR6OmzjWHV9lChoBmgJaA9DCNZUFoXd4m5AlIaUUpRoFUvbaBZHQKcUo7rcCYF1fZQoaAZoCWgPQwgG9S1zOlVqQJSGlFKUaBVNjwFoFkdApxSzneSB9XV9lChoBmgJaA9DCLWJk/tdIHBAlIaUUpRoFUvvaBZHQKcVH2criER1fZQoaAZoCWgPQwjOxd/2hCdxQJSGlFKUaBVNDQFoFkdApxUo482aUnV9lChoBmgJaA9DCMGtu3kq8G5AlIaUUpRoFUvZaBZHQKcVo3azu4R1fZQoaAZoCWgPQwgP7zmw3DxwQJSGlFKUaBVNGAFoFkdApxYc6eXiSHV9lChoBmgJaA9DCJ2DZ0JTrXBAlIaUUpRoFUv5aBZHQKcXON3GGVR1fZQoaAZoCWgPQwiT/fM0IGRxQJSGlFKUaBVL4WgWR0CnF5mTLW7OdX2UKGgGaAloD0MInIwqwzh8c0CUhpRSlGgVTRgBaBZHQKcYrIJ7b+N1fZQoaAZoCWgPQwh2+6wyk6FxQJSGlFKUaBVL3mgWR0CnGLkytV7ydX2UKGgGaAloD0MICqAYWbIbb0CUhpRSlGgVS8hoFkdApxi/GGVRk3V9lChoBmgJaA9DCMVYpl+iRGtAlIaUUpRoFU2qAmgWR0CnGgvV/c33dX2UKGgGaAloD0MIvk7qy9IuD8CUhpRSlGgVS+hoFkdApxoYScslLXV9lChoBmgJaA9DCN/DJcedUhZAlIaUUpRoFUvNaBZHQKcaJA+IM0B1fZQoaAZoCWgPQwjt1jIZjl5tQJSGlFKUaBVNXgFoFkdApxpZXlr/KnV9lChoBmgJaA9DCEvJchLKf2FAlIaUUpRoFU3aAWgWR0CnGr2MCLdfdX2UKGgGaAloD0MIuCBbli/pcUCUhpRSlGgVTS0BaBZHQKcbEbedkJ91fZQoaAZoCWgPQwgBomDG1L9yQJSGlFKUaBVNawFoFkdApxtCF23az3V9lChoBmgJaA9DCE3YfjLGzm1AlIaUUpRoFUvraBZHQKcbR8XvYvp1fZQoaAZoCWgPQwgRje4g9h5zQJSGlFKUaBVNUgFoFkdApxuITwlSj3V9lChoBmgJaA9DCITTghc9AnFAlIaUUpRoFUv3aBZHQKcca6Ae7tl1fZQoaAZoCWgPQwjeyhKdZTVwQJSGlFKUaBVL/GgWR0CnHNWZJCjUdX2UKGgGaAloD0MIFeP8TSiGQkCUhpRSlGgVS81oFkdApxzbwSamXXV9lChoBmgJaA9DCGMOgo5WlTJAlIaUUpRoFUucaBZHQKcdB+n62v11fZQoaAZoCWgPQwi3XWiukwFyQJSGlFKUaBVL3GgWR0CnHkiGvfTDdX2UKGgGaAloD0MImpfD7jtVcECUhpRSlGgVTQUBaBZHQKcfF08vEjx1fZQoaAZoCWgPQwjJAiZw68JeQJSGlFKUaBVN6ANoFkdApx9arvLHMnV9lChoBmgJaA9DCIOKql/pmHBAlIaUUpRoFU0FAWgWR0CnH2DcEeQudX2UKGgGaAloD0MI/67PnPXBb0CUhpRSlGgVS/toFkdApyAUZzgdfnV9lChoBmgJaA9DCIdsIF1sMXBAlIaUUpRoFU0EAWgWR0CnIEcfeUILdX2UKGgGaAloD0MI0LcFS/W0ckCUhpRSlGgVS+xoFkdApyEeXXyy2XV9lChoBmgJaA9DCG+5+rEJ8HFAlIaUUpRoFU0mAWgWR0CnIUo+nqFAdX2UKGgGaAloD0MISMX/HdE2bUCUhpRSlGgVTV0BaBZHQKchh4vexfR1fZQoaAZoCWgPQwgTRrOyfUxwQJSGlFKUaBVNTAFoFkdApyGHtv4ub3V9lChoBmgJaA9DCGoWaHdIk29AlIaUUpRoFUvraBZHQKchlhvze411fZQoaAZoCWgPQwisyVNWU2VxQJSGlFKUaBVNBQFoFkdApyI3Vf/m1nV9lChoBmgJaA9DCFCOAkTBT1bAlIaUUpRoFU3rAWgWR0CnIorbpNbkdX2UKGgGaAloD0MIAALWql3/QkCUhpRSlGgVS7RoFkdApyKkQf6oEXV9lChoBmgJaA9DCF8JpMSuAW9AlIaUUpRoFU0vAWgWR0CnIs1w5vLpdX2UKGgGaAloD0MIUmLX9va1a0CUhpRSlGgVTQMCaBZHQKci6A3kxRF1fZQoaAZoCWgPQwivB5Pi4/VuQJSGlFKUaBVL7WgWR0CnJH2M85jpdX2UKGgGaAloD0MIJo+n5QcmNUCUhpRSlGgVS79oFkdApySbf779AHV9lChoBmgJaA9DCGACt+5mpHFAlIaUUpRoFU00AWgWR0CnJSNKh+OPdX2UKGgGaAloD0MI9YHknUPbcECUhpRSlGgVS9VoFkdApyUndIoVmHV9lChoBmgJaA9DCM1aCki7/3FAlIaUUpRoFU04AWgWR0CnJTn9m6GydX2UKGgGaAloD0MICHdn7fbYcUCUhpRSlGgVTWoBaBZHQKclOfe1rqN1fZQoaAZoCWgPQwh4exACsltxQJSGlFKUaBVNDgFoFkdApyVI4bS7XnV9lChoBmgJaA9DCKyQ8pPqnHFAlIaUUpRoFUuyaBZHQKcmEW2w3YN1fZQoaAZoCWgPQwgDJQUWwHNuQJSGlFKUaBVL/2gWR0CnJhZmZmZmdX2UKGgGaAloD0MIKbFre/vYcECUhpRSlGgVS81oFkdApyZFE7W/anV9lChoBmgJaA9DCMfUXdnFE3FAlIaUUpRoFUvsaBZHQKcmalFc6eZ1fZQoaAZoCWgPQwgpzeZxmPlvQJSGlFKUaBVNGQFoFkdApyaXs7dSEXV9lChoBmgJaA9DCJxpwvaTtGxAlIaUUpRoFU2/A2gWR0CnJ8oHcDbKdX2UKGgGaAloD0MIH0lJD0NvNkCUhpRSlGgVS5ZoFkdApyfkOkLx7XV9lChoBmgJaA9DCKWFyyrsm3JAlIaUUpRoFU0yAWgWR0CnJ/+RgZ0kdX2UKGgGaAloD0MIlphnJS32bkCUhpRSlGgVS9toFkdApyiSZQYUFnV9lChoBmgJaA9DCDGale1DsW5AlIaUUpRoFU1DAWgWR0CnKJ+HBUJfdX2UKGgGaAloD0MIMC/APvq1ckCUhpRSlGgVTaIBaBZHQKcpHFDv3Jx1fZQoaAZoCWgPQwifkJ23saRtQJSGlFKUaBVL6mgWR0CnKW/L1VYIdX2UKGgGaAloD0MIKzBkdavcbUCUhpRSlGgVTRQBaBZHQKcpjK8tf5V1fZQoaAZoCWgPQwi2ateENMlxQJSGlFKUaBVL8WgWR0CnKaNxVAAydX2UKGgGaAloD0MI9s5oq5KTbECUhpRSlGgVS/RoFkdApym/lQuVX3V9lChoBmgJaA9DCAbZsnwdGnFAlIaUUpRoFU0LAWgWR0CnKf2yC4BndX2UKGgGaAloD0MItB8pIsMFcUCUhpRSlGgVS9VoFkdApyn+xD9fkXV9lChoBmgJaA9DCDI7i95pC3BAlIaUUpRoFUvjaBZHQKcqWiUPhAJ1fZQoaAZoCWgPQwjAlIEDmihyQJSGlFKUaBVL2mgWR0CnKli2tuDSdX2UKGgGaAloD0MIOUVHcvmfPUCUhpRSlGgVS9loFkdApyp5hlUZN3V9lChoBmgJaA9DCPrt68B5s3NAlIaUUpRoFU0AAWgWR0CnKp0KZ2IPdX2UKGgGaAloD0MIzR/T2jRWckCUhpRSlGgVTQsBaBZHQKcsf5FgDzR1fZQoaAZoCWgPQwi6EoHq35RxQJSGlFKUaBVNEAFoFkdApyy5KUVzqHV9lChoBmgJaA9DCAoQBTNmv3BAlIaUUpRoFUvtaBZHQKctSRKYiPh1fZQoaAZoCWgPQwiK6NfWTwNJQJSGlFKUaBVLwWgWR0CnLWiMPz4DdX2UKGgGaAloD0MI8yGoGr1KLUCUhpRSlGgVS9poFkdApy16y2QXAXV9lChoBmgJaA9DCFxYN94drGxAlIaUUpRoFU0ZAWgWR0CnLZ/MGHHndX2UKGgGaAloD0MISgwCK4cqOkCUhpRSlGgVS9FoFkdApy24nH/953V9lChoBmgJaA9DCFA4u7VMFXBAlIaUUpRoFU0nAWgWR0CnLfD94u9OdX2UKGgGaAloD0MItDo5QzEycECUhpRSlGgVTVwBaBZHQKcuUOYIBzV1fZQoaAZoCWgPQwiRRZp4Ry5xQJSGlFKUaBVNJQFoFkdApy79iKBNEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 224, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 14, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76fbdc3cff98c68535adac61932db52fe85db88750dff496c361db88f1e3d46f
|
3 |
+
size 211001
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.37769807852015, "std_reward": 19.489840626036145, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:17:00.141856"}
|