--- license: mit datasets: - EleutherAI/pile language: - en base_model: - openai-community/gpt2 --- ## Model Information The ASE collection of language models is a collection of pretrained models for assessing association strength. More details can be found in [CxGLearner](https://learner.xlxw.org/) . **Model developer**: [ZJU MMF (CxGrammar)](https://github.com/CxGrammar) **Model Architecture:** GPT-2 (6 layers) **Supported languages:** English **License:** MIT ## Use with cxglearner Starting with `cxglearner >= 1.3.2` onward, you can run ASE using cxglearner `Association` module. Make sure to update your cxglearner installation via `pip install --upgrade cxglearner`. ### Example ```python from cxglearner.config import Config, DefaultConfigs from cxglearner.lm import Association from cxglearner.encoder import Encoder from cxglearner.utils import init_logger config = Config(DefaultConfigs.eng) # Set the specific model config.lm.output_path = "CxGrammar/ase-gpt-medium-law" logger = init_logger(config) encoder = Encoder(config, logger) # When instantiating Association, cxglearner will automatically download model parameter files from Huggingface Hub. # However, you can also manually download pytorch_model.bin and set the output_path to a local path. asso = Association(config, logger, encoder=encoder) example_sentence = "The wetlands can be more" select_mask = ['lexical', 'lexical', 'lexical', 'lexical'] select_mask = [level_map[level] for level in select_mask] select_mask_2 = ['upos', 'lexical', 'lexical', 'lexical'] select_mask_2 = [level_map[level] for level in select_mask_2] encoded = encoder.encode(example_sentence, need_ids=True) res = encoder.convert_ids_to_tokens([ele[0] for ele in encoded]) encoded = encoded[1:] inputs_1 = [element[select_mask[i]] for i, element in enumerate(encoded)] inputs_2 = [element[select_mask_2[i]] for i, element in enumerate(encoded)] inputs1_tensor = torch.Tensor(inputs_1).type(torch.int64) inputs2_tensor = torch.Tensor(inputs_2).type(torch.int64) # dynamic candidates candidate_dynamic = asso_handler.compute_candidate(inputs_1) print(candidate_dynamic) ```